Abstract:
Provided is an apparatus for determining a charge to an entity associated with informational material disseminated to at least one mobile terminal. The apparatus includes a processing unit that may be configured to obtain respective location data of the mobile terminal during and subsequent to rendering of the informational material at the mobile terminal. A billing unit may be configured to determine a charge to an entity associated with the informational material based at least in part on movement of the at least one mobile terminal subsequent to rendering of the informational material as indicated by the location data. Corresponding methods and computer program products are also provided.
Abstract:
A system for managing a plurality of identities of a user includes a network entity capable of operating a user naming system (UNS). The UNS is capable of receiving, from an application, a request for an identity of a user. The UNS is also capable of automatically selecting a predefined identity based upon the application and at least one user preference independent of user input to the application. The UNS can then provide the selected identity to the application. More particularly, the UNS can receive a request for the identity of a user from a trusted application. Then, the UNS can select an identity further based upon a status of the user. The UNS can alternatively receive a request for the identity of a user from a non-trusted application. Then, the UNS can select or generate a pseudonym, which the UNS can provide to the application.
Abstract:
An apparatus and method is provided for forwarding multicast packets in a communication network using a physically scoped routing protocol. Each of a plurality of access routers maintains information concerning the addresses of physically neighboring access routers. Multicast packets received by each access router are evaluated to determine whether they should be routed using a conventional administratively scoped routing rule or using a physically scoped routing rule. Administratively scoped packets are routed to the multicast address using conventional administrative scoping rules. Physically scoped packets are “tunneled” by encapsulating them in a unicast packet, which is then transmitted to one or more physically neighboring access routers. An optional time-to-live parameter allows multiple levels of neighboring proximity to be specified.
Abstract:
A method for authenticating communicating parties is disclosed. In the method biometric information associated with a first party is generated based on a recording of the first party presenting a predefined input parameter. Said biometric information may then be transmitted to a second party. Authenticity of a security parameter associated with the first party can then be verified based on said biometric information.
Abstract:
IP-based Location Services (IP-LCS) is a valuable application that may be supported by a majority of cellular phones in the future. Services offered by such applications can be closely coupled to the location of the user. IP-LCS may be designed to permit a location based application resident on a mobile terminal to track a mobile terminal or a cluster of mobile terminals, or to otherwise provide location based services to a mobile node based on the location of another mobile node or a cluster of mobile nodes.
Abstract:
A method for authenticating communicating parties is disclosed. In the method biometric information associated with a first party is generated based on a recording of the first party presenting a predefined input parameter. Said biometric information may then be transmitted to a second party. Authenticity of a security parameter associated with the first party can then be verified based on said biometric information.
Abstract:
A communications system and method are provided for handing over a call from a packet-switched network (e.g., IP network) to a circuit-switched network (e.g., PLMN, PSTN, etc.). The system includes a first terminal capable of communicating via a packet-switched network and a circuit-switched network, and a second terminal capable of communicating via a circuit-switched network. The system also includes a gateway capable of mapping communications between a packet-switched network and at least one circuit-switched network. The gateway can support communication between the first terminal and the second terminal such that the first terminal has a packet-switched connection with the gateway and the second terminal has a circuit-switched connection with the gateway. The first terminal can then establish a circuit-switch connection with the gateway. Thereafter, the gateway can connect the circuit-switched connection established between the first terminal and the gateway with the circuit-switched connection between the gateway and the second terminal.
Abstract:
Disclosed are a method and a system that operates in accordance with the method to set up a TCP session between a MS and an end point destination via a wireless network and the Internet. The method includes sending a split TCP connection request from the MS to a PEP located in the network, where the split TCP request includes information for identifying a network address of the MS and a network address of the end point destination. The method further includes, in response to receiving the split TCP connection request from the MS, establishing a split TCP connection that includes a wireless TCP (WTCP) connection between the MS and the PEP, and a TCP connection at least part way between the PEP and the end point destination. In one embodiment the end point destination is an application server that is coupled to the Internet, and the TCP connection is established between the PEP and the application server. In another embodiment the end point destination is a second MS that is coupled to a second PEP in a second wireless network, and the TCP connection is established at least as far as the second PEP, and then as a WTCP connection from the second PEP to the second MS.
Abstract:
An apparatus and method is provided for facilitating the seamless handoff of IP connections between access routers in an IP network. The mobile IP network includes two or more access routers each serving a different geographic service area. When a mobile terminal moves from the first service area to the second service area, the mobile terminal transmits to the second access router the IP address of the previous access router. The second access router uses this information to learn capabilities of the first access router (e.g., bandwidths supported, security schemes, and the like) for use in future handoff decisions, and exchanges capability information with the first access router. The assumption is made based on the exchanged information that the access routers are geographically proximate. When another mobile terminal transitions from one service area to another, the system selects an optimal target access router based on the previously learned information, including the inferred geographic proximity between access routers.
Abstract:
An apparatus and method is provided for facilitating the seamless handoff of IP connections between access routers in an IP network. The mobile IP network includes two or more access routers each serving a different geographic service area. When a mobile terminal moves from the first service area to the second service area, the mobile terminal transmits to the second access router the IP address of the previous access router. The second access router uses this information to learn capabilities of the first access router (e.g., bandwidths supported, security schemes, and the like) for use in future handoff decisions, and exchanges capability information with the first access router. The assumption is made based on the exchanged information that the access routers are geographically proximate. When another mobile terminal transitions from one service area to another, the system selects an optimal target access router based on the previously learned information, including the inferred geographic proximity between access routers.