Abstract:
Described herein are devices and techniques for suppressing parasitic modes in planar waveguide amplifier structures. One or more of the side and end facets of a planar waveguide amplifier are angled with respect to a fast axis defined in a transverse plane perpendicular to a core region. A relationship between glancing in-plane angles of incidence and threshold bevel angles θT can be used to select side bevel angles θS to suppress parasitics by redirecting amplified spontaneous emission (ASE) from the core. It is possible to select the one or more bevel angles θS to be great enough to substantially redirect all but ballistic photons of any guided modes, effectively narrowing a numerical aperture of the planar waveguide amplifier along a slow axis, defined in a transverse plane perpendicular to the fast axis. Beneficially, such improvements can be realized for three part waveguide structures (e.g., cladding-core-cladding), with substantially smooth edge facets.
Abstract:
Systems and methods described herein provide a thermally compensated waveguide structure having a thermal index profile configured to correct thermal aberrations caused by temperature gradients in a fast axis direction and/or correct other forms of distortions in an output beam generated by the waveguide structure. The waveguide structure includes a core region, one or more cladding, and one or more heat sinks. A geometry of these portions with respect to each other can provide a cold refractive index profile such that a cold refractive index value of a portion of the core region is less than a cold refractive index value of at least one of the one or more cladding regions. Responsive to thermal compensation, the cold refractive index profile is modified, through addition of a thermal index profile, to form a hot index profile having attributes including good overlap of the fundamental mode with the gain profile and mode clean-up through gain discrimination against higher order modes.
Abstract:
Systems and methods described herein provide a thermally compensated waveguide structure having a thermal index profile configured to correct thermal aberrations caused by temperature gradients in a fast axis direction and/or correct other forms of distortions in an output beam generated by the waveguide structure. The waveguide structure includes a core region, one or more cladding, and one or more heat sinks. A geometry of these portions with respect to each other can provide a cold refractive index profile such that a cold refractive index value of a portion of the core region is less than a cold refractive index value of at least one of the one or more cladding regions. Responsive to thermal compensation, the cold refractive index profile is modified, through addition of a thermal index profile, to form a hot index profile having attributes including good overlap of the fundamental mode with the gain profile and mode clean-up through gain discrimination against higher order modes.
Abstract:
Described herein are devices and techniques for suppressing parasitic modes in planar waveguide amplifier structures. One or more of the side and end facets of a planar waveguide amplifier are angled with respect to a fast axis defined in a transverse plane perpendicular to a core region. A relationship between glancing in-plane angles of incidence and threshold bevel angles θT can be used to select side bevel angles θS to suppress parasitics by redirecting amplified spontaneous emission (ASE) from the core. It is possible to select the one or more bevel angles θS to be great enough to substantially redirect all but ballistic photons of any guided modes, effectively narrowing a numerical aperture of the planar waveguide amplifier along a slow axis, defined in a transverse plane perpendicular to the fast axis. Beneficially, such improvements can be realized for three part waveguide structures (e.g., cladding-core-cladding), with substantially smooth edge facets.