摘要:
A light absorbing layer which is bonded to a laser medium to configure a bonded body, wherein the light absorbing layer is formed from a glass material and, in an oscillation wavelength (wavelength of 650 nm or more and less than 1400 nm) of the laser medium, an absorption coefficient is 0.1 to 10.0 cm−1, a difference in refractive index between the light absorbing layer and the laser medium is within ±0.1, and a difference in linear thermal expansion coefficient between the light absorbing layer and the laser medium is within ±1 ppm/K. The present invention relates to a light absorbing layer for preventing parasitic oscillation, and aims to provide a material capable of suppressing the manufacturing cost and which can be easily processed for preparing a bonded body.
摘要:
A MOPA laser system that includes a seed laser configured to output pulsed laser light, an amplifier configured to receive and amplify the pulsed laser light emitted by the seed laser; and a pump laser configured to deliver a pump laser beam to both the seed laser and the amplifier.
摘要:
A composite laser gain medium is comprised of a first rare-earth element doped core; and a second rare-earth element doped cladding, at least partially, adjacent to the core. A portion of the lasing by the cladding at one wavelength within the composite laser gain medium is absorbed by the core so as to cause lasing of the core at a different wavelength. At least two distinct rare earth element pairs may be used in embodiments: (1) thulium (Tm) as a cladding rare-earth dopant and holmium (Ho) as the core rare-earth dopant; and (2) ytterbium (Yb) as a cladding rare-earth dopant and erbium (Er) as the core rare-earth dopant. Other rare earth element pairs are also believed possible. The laser composite gain medium may be configured to have a slab, or a cylindrical geometry.
摘要:
A composite laser gain medium is comprised of a first rare-earth element doped core; and a second rare-earth element doped cladding, at least partially, adjacent to the core. A portion of the lasing by the cladding at one wavelength within the composite laser gain medium is absorbed by the core so as to cause lasing of the core at a different wavelength. At least two distinct rare earth element pairs may be used in embodiments: (1) thulium (Tm) as a cladding rare-earth dopant and holmium (Ho) as the core rare-earth dopant; and (2) ytterbium (Yb) as a cladding rare-earth dopant and erbium (Er) as the core rare-earth dopant. Other rare earth element pairs are also believed possible. The laser composite gain medium may be configured to have a slab, or a cylindrical geometry.
摘要:
Described herein are devices and techniques for suppressing parasitic modes in planar waveguide amplifier structures. One or more of the side and end facets of a planar waveguide amplifier are angled with respect to a fast axis defined in a transverse plane perpendicular to a core region. A relationship between glancing in-plane angles of incidence and threshold bevel angles θT can be used to select side bevel angles θS to suppress parasitics by redirecting amplified spontaneous emission (ASE) from the core. It is possible to select the one or more bevel angles θS to be great enough to substantially redirect all but ballistic photons of any guided modes, effectively narrowing a numerical aperture of the planar waveguide amplifier along a slow axis, defined in a transverse plane perpendicular to the fast axis. Beneficially, such improvements can be realized for three part waveguide structures (e.g., cladding-core-cladding), with substantially smooth edge facets.
摘要:
An optical amplifier for use as a final amplification stage for a fiber-MOPA has a gain-element including a thin wafer or chip of ytterbium-doped YAG. An elongated gain-region is formed in gain-element by multiple incidences of radiation from a diode-laser bar.
摘要:
There is provided a rotary disk laser module including disk comprised of at least one lasing material. The lasing material may be excited by a laser excitation source, such as an optical pump beam directed onto the disk. The laser gain region contains excited lasing material and extends between the first and second surfaces of the disk. A laser generator is formed when the gain region is brought into optical communication with a laser generator. A laser generator may be a laser oscillator or a laser amplifier. The disk may move in order to enable various lasing functionality to the laser module. For instance, the disk may rotate, translate, or tilt to rotate the gain region, provide various quantum effects, or to enable heat transfer with a heat sink. A high-power laser generator may be formed by using a number of disks containing lasing material, exciting the lasing material using at least one laser excitation source, and bringing them into optical communication with a laser generator.
摘要:
A laser including a semiconductor laser stack group, a beam compositor, a pump beam collimator, a thin-disk laser crystal, a first and a second parabolic reflectors with the same facial contour function, a corrective reflector, an output mirror, and a jet-flow impact cooling system. The thin-disk laser crystal and the output mirror form a laser resonant cavity. The first parabolic reflector, second parabolic reflector, thin-disk laser crystal, and corrective reflector form a multi-pumping focus cavity. The jet-flow impact cooling system is used for cooling the thin-disk laser crystal. The pump light produced by the semiconductor laser stack group is composited by the beam compositor, collimated by the pump light collimator, and enters the multi-pumping focus cavity. Within the multi-pumping focus cavity, the pump light is focused, collimated, and deflected to converge on the thin-disk laser crystal. The laser resonant cavity produces and outputs a laser beam.
摘要:
A monoblock laser cavity incorporates optical components for a short-pulse laser. These optical components are ‘locked’ into alignment forming an optical laser cavity for flash lamp or diode laser pumping. The optical laser cavity does not need optical alignment after it is fabricated, increasing the brightness of the monoblock laser.
摘要:
To achieve a solid-state laser element capable of outputting a high-power laser, in a planar waveguide type solid-state laser element that causes a plurality of fundamental laser beams to oscillate in a direction of an optic axis within a flat plate-like laser medium, and forms a waveguide structure in a thickness direction of the laser medium, which is a direction perpendicular to a principal surface of the flat plate-like laser medium, the laser medium is separated in a principal-surface width direction of the laser medium, which is a direction perpendicular to the direction of the optic axis and the thickness direction of the laser medium, by a groove extending in the direction of the optic axis within the laser medium.