Abstract:
A method for controlling an electric machine in a hybrid or electric motor vehicle fed by a battery by power electronics, the battery including an assembly of modules interconnected in series and the method realizes a module-commutation in which each module can be selectively disconnected from the assembly. The method includes: calculating energy losses as a function of current operating characteristics of the electric machine, or respectively for each of a plurality of possible module-commutation configurations; determining at least one optimum module-commutation configuration from the plurality of possible module-commutation configurations, reducing energy losses to a minimum; and commutating the modules according to the previously determined optimum commutation configuration.
Abstract:
A system and method estimates the state of charge of a battery comprising at least two modules each provided with at least one cell. A sensor senses a series current flowing through all cells of the modules connected in series. A switching device selectively disconnects one of the modules, the other modules remaining connected in series. A calculator calculates the state of charge of the cells through which the series current flows from the integration of the series current and calculates the state of charge of each of the cells of the disconnected module from an open circuit voltage thereof.
Abstract:
A system and method estimates the state of charge of a battery comprising at least two modules each provided with at least one cell. A sensor senses a series current flowing through all cells of the modules connected in series. A switching device selectively disconnects one of the modules, the other modules remaining connected in series. A calculator calculates the state of charge of the cells through which the series current flows from the integration of the series current and calculates the state of charge of each of the cells of the disconnected module from an open circuit voltage thereof.
Abstract:
A device balancing overall levels of electrical charge in plural blocks of cells in a battery. The blocks can be connected in a circuit during a charging phase of the cells accumulating charge, and during a discharging phase of the cells giving back charge. The device includes one series switch and one parallel switch. The series switch can, when closed and the parallel switch is open, connect a block to the circuit, in series with the other blocks, so that the block is connected during the charging and discharging phases. The parallel switch can, when closed and the series switch is open, disconnect the block from the circuit, so that the block is disconnected if discharging disconnection conditions are met during the discharging phase or if charging disconnection conditions are met during the charging phase. The block includes a mechanism locally balancing charge levels of its cells when disconnected.
Abstract:
A method for controlling an electric machine in a hybrid or electric motor vehicle fed by a battery by power electronics, the battery including an assembly of modules interconnected in series and the method realizes a module-commutation in which each module can be selectively disconnected from the assembly. The method includes: calculating energy losses as a function of current operating characteristics of the electric machine, or respectively for each of a plurality of possible module-commutation configurations; determining at least one optimum module-commutation configuration from the plurality of possible module-commutation configurations, reducing energy losses to a minimum; and commutating the modules according to the previously determined optimum commutation configuration.
Abstract:
A device balancing overall levels of electrical charge in plural blocks of cells in a battery. The blocks can be connected in a circuit during a charging phase of the cells accumulating charge, and during a discharging phase of the cells giving back charge. The device includes one series switch and one parallel switch. The series switch can, when closed and the parallel switch is open, connect a block to the circuit, in series with the other blocks, so that the block is connected during the charging and discharging phases. The parallel switch can, when closed and the series switch is open, disconnect the block from the circuit, so that the block is disconnected if discharging disconnection conditions are met during the discharging phase or if charging disconnection conditions are met during the charging phase. The block includes a mechanism locally balancing charge levels of its cells when disconnected.