Abstract:
In an SOI substrate having a semiconductor substrate serving as a support substrate, an insulating layer on the semiconductor substrate and a semiconductor layer on the insulating layer, an element isolation region which penetrates the semiconductor layer and the insulating layer and whose bottom part reaches the semiconductor substrate is formed, and a gate electrode is formed on the semiconductor layer via a gate insulating film. A divot is formed in the element isolation region at a position adjacent to the semiconductor layer, and a buried insulating film is formed in the divot. The gate electrode includes a part formed on the semiconductor layer via the gate insulating film, a part located on the buried insulating film and a part located on the element isolation region.
Abstract:
Gate patterns are formed on a semiconductor layer and a conductive film is formed on the semiconductor layer so as to cover the gate patterns. By performing a polishing process to the conductive film and patterning the polished conductive film, pad layers are formed between the gate patterns via sidewall spacers.
Abstract:
A semiconductor device reduces measurement time. The semiconductor device according to an embodiment of the invention includes: plural series-coupled resistance elements for testing; plural switches coupled to a coupling path coupling the resistance elements; and plural selection circuits to select, by turning on or off the switches, a number of the series-coupled resistance elements to be measured as a group. In the semiconductor device: the switches include plural first switches coupled to plural groups of the resistance elements, each of the groups including N (N=2 or a larger integer) of the resistance elements; and the selection circuits turn the first switches on or off and thereby select a number of the series-coupled resistance elements to be measured as a group, the number equaling the N.
Abstract:
In a step F2, an isolation region and an element formation region are formed in an SOI substrate. In a step F3, an SOI region and a bulk region are formed. Here, an isolation insulating film of the isolation region is exposed along the entire perimeter of a sidewall of a step between the SOI region and the bulk region. In a step F4, a gate electrode is formed. In a step F5, extension implantation of a bulk transistor is carried out. Here, treatment for preventing an impurity for extension implantation from being implanted into the SOI region is performed. In a step F6, an elevated epitaxial layer is formed in the SOI region.
Abstract:
A semiconductor device reduces measurement time. The semiconductor device according to an embodiment of the invention includes: plural series-coupled resistance elements for testing; plural switches coupled to a coupling path coupling the resistance elements; and plural selection circuits to select, by turning on or off the switches, a number of the series-coupled resistance elements to be measured as a group. In the semiconductor device: the switches include plural first switches coupled to plural groups of the resistance elements, each of the groups including N (N=2 or a larger integer) of the resistance elements; and the selection circuits turn the first switches on or off and thereby select a number of the series-coupled resistance elements to be measured as a group, the number equaling the N.