Abstract:
In general, in a semiconductor active element such as a normally-off JFET based on SiC in which an impurity diffusion speed is significantly lower than in silicon, gate regions are formed through ion implantation into the side walls of trenches formed in source regions. However, to ensure the performance of the JFET, it is necessary to control the area between the gate regions thereof with high precision. Besides, there is such a problem that, since a heavily doped PN junction is formed by forming the gate regions in the source regions, an increase in junction current cannot be avoided. The present invention provides a normally-off power JFET and a manufacturing method thereof and forms the gate regions according to a multi-epitaxial method which repeats a process including epitaxial growth, ion implantation, and activation annealing a plurality of times.
Abstract:
A method for manufacturing a semiconductor device includes carrying out a first heat treatment accompanied by nitration on a first insulating film and a silicon carbide substrate in a first gas atmosphere, after the carrying out of the first heat treatment and after a temperature of the silicon carbide substrate has become 700° C. or less, removing the silicon carbide substrate from a processing apparatus and exposing the silicon carbide substrate to air in an atmosphere outside of the processing apparatus, and after the exposing of the silicon carbide substrate to air in the atmosphere, carrying out a second heat treatment on the first insulating film and the silicon carbide substrate in a second gas atmosphere which is an inert gas.
Abstract:
The present invention makes it possible to improve the accuracy of wet etching and miniaturize a semiconductor device in the case of specifying an active region of a vertical type power MOSFET formed over an SiC substrate by opening an insulating film over the substrate by the wet etching. After a silicon oxide film having a small film thickness and a polysilicon film having a film thickness larger than the silicon oxide film are formed in sequence over an epitaxial layer, the polysilicon film is opened by a dry etching method, successively the silicon oxide film is opened by a wet etching method, and thereby the upper surface of the epitaxial layer in an active region is exposed.
Abstract:
A manufacturing method of a junction field effect transistor includes the steps of: (a) forming an n+-type source layer on a surface of an n−-type drift layer formed on an n+-type SiC substrate; (b) forming a plurality of shallow trenches disposed at predetermined intervals by etching the surface of the n−-type drift layer with a silicon oxide film formed on the n−-type drift layer used as a mask; (c) forming an n-type counter dope layer by doping the n−-type drift layer below each of the shallow trenches with nitrogen by using a vertical ion implantation method; (d) forming a sidewall spacer on each sidewall of the silicon oxide film and the shallow trenches; and (e) forming a p-type gate layer by doping the n−-type drift layer below each of shallow trenches with aluminum by using the vertical ion implantation method.
Abstract:
The present invention makes it possible to improve the accuracy of wet etching and miniaturize a semiconductor device in the case of specifying an active region of a vertical type power MOSFET formed over an SiC substrate by opening an insulating film over the substrate by the wet etching. After a silicon oxide film having a small film thickness and a polysilicon film having a film thickness larger than the silicon oxide film are formed in sequence over an epitaxial layer, the polysilicon film is opened by a dry etching method, successively the silicon oxide film is opened by a wet etching method, and thereby the upper surface of the epitaxial layer in an active region is exposed.
Abstract:
To provide a semiconductor device having a vertical JFET excellent in off-state performance without reducing a production yield. A gate region quadrangular in the cross-section along a channel width direction is formed below a source region by impurity ion implantation. By first etching, the source region over the upper surface of the gate region is removed to separate therebetween. Then, the upper surface of the gate region is processed by second etching having an etching rate lower at the side surface than at the center of the gate region. The resulting gate region has a lower surface parallel to the substrate surface and an upper surface below a boundary between the source region and the channel formation region and having, in the cross-section along the channel width direction, a downward slope from the side surface to the center. As a result, a channel length with reduced variations can be obtained.
Abstract:
A manufacturing method of a junction field effect transistor includes the steps of: (a) forming an n+-type source layer on a surface of an n−-type drift layer formed on an n+-type SiC substrate; (b) forming a plurality of shallow trenches disposed at predetermined intervals by etching the surface of the n−-type drift layer with a silicon oxide film formed on the n−-type drift layer used as a mask; (c) forming an n-type counter dope layer by doping the n−-type drift layer below each of the shallow trenches with nitrogen by using a vertical ion implantation method; (d) forming a sidewall spacer on each sidewall of the silicon oxide film and the shallow trenches; and (e) forming a p-type gate layer by doping the n−-type drift layer below each of shallow trenches with aluminum by using the vertical ion implantation method.