Abstract:
The disclosed examples provide an easy and low-loss solution to reduce voltage stress on motor and cable in inverter-fed motor systems by suppressing resonances on the motor cable with apparatus coupled between the inverter output and the motor cable. Disclosed examples include various methods to mitigate voltage stress on both motor and cable, including an output filter circuit with a cable side parallel RL circuit between an inverter output and a motor cable, and an inverter to provide an inverter output signal to the output filter circuit to drive a load through the motor cable, where the cable side parallel RL circuit includes a resistor coupled in series between the inverter output and the motor cable, and an inductor connected in parallel with the resistor.
Abstract:
The disclosed examples provide an easy and low-loss solution to reduce voltage stress on motor and cable in inverter-fed motor systems by suppressing resonances on the motor cable with apparatus coupled between the inverter output and the motor cable. Disclosed examples include various methods to mitigate voltage stress on both motor and cable, including an output filter circuit with a cable side parallel RL circuit between an inverter output and a motor cable, and an inverter to provide an inverter output signal to the output filter circuit to drive a load through the motor cable, where the cable side parallel RL circuit includes a resistor coupled in series between the inverter output and the motor cable, and an inductor connected in parallel with the resistor.
Abstract:
For reducing volume requirements and magnetic flux leakage, a compact inductor includes a first planar core with a first core thickness along a first axis orthogonal to a plane of the first planar core. In addition, the inductor includes a second planar core disposed parallel to the first planar core with a second core thickness along the first axis. The inductor further includes a plurality of electrical windings disposed between and adjacent to an inside plane of the first planar core and an inside plane of the second planar core. The electrical windings may include insulated electrical wires. No magnetic teeth may be disposed between the first planar core and the second planar core. The first axis is parallel to a magnetic axis of each electrical winding.
Abstract:
Multilevel power converters, power cells and methods are presented for selectively bypassing a power stage of a multilevel inverter circuit, in which a single relay or contactor includes first and second normally closed output control contacts coupled between a given power cell switching circuit and the given power cell output, along with a normally open bypass contact coupled across the power stage output, with a local or central controller energizing the coil of the relay or contactor of a given cell to bypass that cell.
Abstract:
Multilevel power converters, power cells and methods are presented for selectively bypassing a power stage of a multilevel inverter circuit, in which a single relay or contactor includes first and second normally closed output control contacts coupled between a given power cell switching circuit and the given power cell output, along with a normally open bypass contact coupled across the power stage output, with a local or central controller energizing the coil of the relay or contactor of a given cell to bypass that cell.
Abstract:
Multilevel power converters, power cells and methods are presented for selectively bypassing a power stage of a multilevel inverter circuit, in which a single relay or contactor includes first and second normally closed output control contacts coupled between a given power cell switching circuit and the given power cell output, along with a normally open bypass contact coupled across the power stage output, with a local or central controller energizing the coil of the relay or contactor of a given cell to bypass that cell.
Abstract:
Multilevel power converters, power cells and methods are presented for selectively bypassing a power stage of a multilevel inverter circuit, in which a single relay or contactor includes first and second normally closed output control contacts coupled between a given power cell switching circuit and the given power cell output, along with a normally open bypass contact coupled across the power stage output, with a local or central controller energizing the coil of the relay or contactor of a given cell to bypass that cell.
Abstract:
Multilevel power converters, power cells and methods are presented for selectively bypassing a power stage of a multilevel inverter circuit, in which a single relay or contactor includes one or more normally closed output control contacts coupled between a given power cell switching circuit and the given power cell output, along with a normally open bypass contact coupled across the power stage output, with a local or central controller energizing the coil of the relay or contactor of a given cell to bypass that cell.
Abstract:
Multilevel inverters, power cells and bypass methods are presented in which a power cell switching circuit is selectively disconnected from the power cell output, and a bypass which is closed to connect first and second cell output terminals to selectively bypass a power stage of a multilevel inverter, with an optional AC input switch to selectively disconnect the AC input from the power cell switching circuit during bypass.
Abstract:
The present techniques include methods and systems for detecting a failure in a capacitor bank of an electrical drive system. Embodiments include using discharge resistors to discharge capacitors in the capacitor bank, forming a neutral node of the capacitor bank. In different capacitor configurations, the neutral node is measured, and the voltage is analyzed to determine whether a capacitor bank unbalance has occurred. In some embodiments, the node is a neutral-to-neutral node between the discharged side of the discharge resistors and a neutral side of the capacitor bank, or between the discharged side of the discharge resistors and a discharged side of a second set of discharge resistors. In some embodiments, the node is a neutral-to-ground node between the discharged side of the discharge resistors and a ground potential.