摘要:
Solar concentrator plant using natural-draught tower technology, in which the tower is, in turn, used as cooling system. The tower houses saturated or superheated steam receivers in cavities with different orientations, with adaptive dynamic control of the heliostat field in order to direct said receivers towards different focusing points, for the production of electricity, process heat or solar fuels or for use in thermochemical processes.
摘要:
Solar concentrator plant using natural-draught tower technology, in which the tower is, in turn, used as cooling system. The tower houses saturated or superheated steam receivers in cavities with different orientations, with adaptive dynamic control of the heliostat field in order to direct said receivers towards different focusing points, for the production of electricity, process heat or solar fuels or for use in thermochemical processes.
摘要:
Method for the natural-draught cooling of a high-concentration thermoelectric solar plant that includes a central receiver or tower with a heliostat field, wherein the tower is used as a natural-draught cooling tower. The steam originating from the turbine will be made to circulate through a series of condensers located at the base of the tower, where said condensers condense the steam therein and discharge the condensation heat to the atmosphere. The fluid responsible for this heat exchange is the air at ambient temperature at the base of the tower. Once condensed, the steam is pumped back towards the receiver so that it can be re-used as a heat-transfer fluid. The cooling air travels up through the tower and exits through the highest part thereof. The plant can be used to reduce not only its own electricity consumption, but also water consumption.