摘要:
The invention relates to a heat-resistant aluminium alloy for heat exchangers, a method for producing an aluminium strip or sheet for heat exchangers, and a corresponding aluminium strip or sheet. The aim of the invention is to provide an aluminium alloy and an aluminium strip or sheet which has a good recycling capacity, a Solidus temperature of at least 620° C., and an improved heat-resistance after welding. To this end, the inventive aluminium alloy comprises the following parts of alloy constituents in wL %: 0.3%≦Si≦1%, Fe≦0.5%, 0.3%≦Cu≦0.7%, 1.1%≦Mn≦1.8%, 0.15%≦Mg≦0.6%, 0.01%≦Cr≦0.3%, Zn≦0.10%, Ti≦0.3%, unavoidable impurities separately representing a maximum of 0.1%, and together a maximum of 0.15%, the remainder being aluminium.
摘要:
A composite material can include a carrier material that is coated, at least over part of the surface, with a corrosion protection layer made of an aluminum alloy. The composite material can provide a defined, effective, durable corrosion protection and simultaneously have a high recycling potential. The aluminum alloy of the corrosion protection layer can have the following composition in % by weight: 0.8 ≦Mn ≦ 1.8 Zn ≦ 0.05 Cu ≦ 0.05 Si ≦ 1.0 Cr ≦ 0.25 Zr ≦ 0.25 Mg ≦ 0.10 remainder aluminum and unavoidable impurities, individually a maximum of 0.05% by weight, in total a maximum of 0.15% by weight.
摘要:
A composite material can include a carrier material that is coated, at least over part of the surface, with a corrosion protection layer made of an aluminum alloy. The composite material can provide a defined, effective, durable corrosion protection and simultaneously have a high recycling potential. The aluminum alloy of the corrosion protection layer can have the following composition in % by weight: 0.8 ≦ Mn ≦ 1.8 Zn ≦ 0.05 Cu ≦ 0.05 Si ≦ 1.0 Cr ≦ 0.25 Zr ≦ 0.25 Mg ≦ 0.10 remainder aluminum and unavoidable impurities, individually a maximum of 0.05% by weight, in total a maximum of 0.15% by weight.
摘要:
Use of an aluminium composite material consisting of at least one aluminium core alloy and at least one outer brazing layer consisting of an aluminium brazing alloy provided on one or both sides of the aluminium core alloy. Based on this prior art the object of the present invention is to provide a thermal joining process for an aluminium composite material, so that the use of fluxes can be dispensed with, this object being achieved in that the aluminium brazing layer of the aluminium composite material has a pickled surface and the aluminium composite material is used in a fluxless thermal joining process and the joining process is carried out in the presence of a protective gas.