Synaptic weight normalized spiking neuronal networks
    1.
    发明授权
    Synaptic weight normalized spiking neuronal networks 有权
    突触体重标准化的神经元网络

    公开(公告)号:US08655813B2

    公开(公告)日:2014-02-18

    申请号:US12982546

    申请日:2010-12-30

    IPC分类号: G06F15/18 G06N3/08

    CPC分类号: G06N3/049

    摘要: Neuronal networks of electronic neurons interconnected via electronic synapses with synaptic weight normalization. The synaptic weights are based on learning rules for the neuronal network, such that a synaptic weight for a synapse determines the effect of a spiking source neuron on a target neuron connected via the synapse. Each synaptic weight is maintained within a predetermined range by performing synaptic weight normalization for neural network stability.

    摘要翻译: 通过电子突触与突触体重标准化相互联系的神经元网络。 突触权重基于神经元网络的学习规则,使得突触的突触权重决定了刺激源神经元对通过突触连接的目标神经元的影响。 通过对神经网络稳定性执行突触权重归一化,将每个突触重量保持在预定范围内。

    SYNAPTIC WEIGHT NORMALIZED SPIKING NEURONAL NETWORKS
    2.
    发明申请
    SYNAPTIC WEIGHT NORMALIZED SPIKING NEURONAL NETWORKS 有权
    SYNAPTIC WEIGHT正规化SPIKING神经网络

    公开(公告)号:US20120173471A1

    公开(公告)日:2012-07-05

    申请号:US12982546

    申请日:2010-12-30

    IPC分类号: G06N3/063 G06N3/08

    CPC分类号: G06N3/049

    摘要: Neuronal networks of electronic neurons interconnected via electronic synapses with synaptic weight normalization. The synaptic weights are based on learning rules for the neuronal network, such that a synaptic weight for a synapse determines the effect of a spiking source neuron on a target neuron connected via the synapse. Each synaptic weight is maintained within a predetermined range by performing synaptic weight normalization for neural network stability.

    摘要翻译: 通过电子突触与突触体重标准化相互联系的神经元网络。 突触权重基于神经元网络的学习规则,使得突触的突触权重决定了刺激源神经元对通过突触连接的目标神经元的影响。 通过对神经网络稳定性执行突触权重归一化,将每个突触重量保持在预定范围内。

    Adaptive and integrated visualization of spatiotemporal data from large-scale simulations
    3.
    发明授权
    Adaptive and integrated visualization of spatiotemporal data from large-scale simulations 失效
    来自大规模模拟的时空数据的自适应和综合可视化

    公开(公告)号:US08699566B2

    公开(公告)日:2014-04-15

    申请号:US12695119

    申请日:2010-01-27

    IPC分类号: G06F15/00

    摘要: Adaptive and integrated visualization of spatiotemporal data from large-scale simulation, is provided. A simulation is performed utilizing a simulator comprising multiple processors, generating spatiotemporal data samples from the simulation. Each data sample has spatial coordinates with a time stamp at a specific time resolution, and a tag. The data samples are assembled into data streams based on at least one of a spatial relationship and the corresponding tag. Each data stream is encoded into multiple formats, and an integrated and adaptive visualization of the data streams is displayed, wherein various data streams are simultaneously and synchronously displayed.

    摘要翻译: 提供了大规模模拟的时空数据的自适应和综合可视化。 使用包括多个处理器的模拟器执行模拟,从仿真生成时空数据样本。 每个数据样本具有具有特定时间分辨率的时间戳的空间坐标和标签。 基于空间关系和相应标签中的至少一个将数据样本组装成数据流。 每个数据流被编码成多种格式,并且显示数据流的集成和自适应可视化,其中同时和同步地显示各种数据流。

    ADAPTIVE AND INTEGRATED VISUALIZATION OF SPATIOTEMPORAL DATA FROM LARGE-SCALE SIMULATIONS
    4.
    发明申请
    ADAPTIVE AND INTEGRATED VISUALIZATION OF SPATIOTEMPORAL DATA FROM LARGE-SCALE SIMULATIONS 失效
    大规模模拟的空间数据的自适应和集成可视化

    公开(公告)号:US20110182349A1

    公开(公告)日:2011-07-28

    申请号:US12695119

    申请日:2010-01-27

    IPC分类号: H04N11/04 G06T15/00

    摘要: Adaptive and integrated visualization of spatiotemporal data from large-scale simulation, is provided. A simulation is performed utilizing a simulator comprising multiple processors, generating spatiotemporal data samples from the simulation. Each data sample has spatial coordinates with a time stamp at a specific time resolution, and a tag. The data samples are assembled into data streams based on at least one of a spatial relationship and the corresponding tag. Each data stream is encoded into multiple formats, and an integrated and adaptive visualization of the data streams is displayed, wherein various data streams are simultaneously and synchronously displayed.

    摘要翻译: 提供了大规模模拟的时空数据的自适应和综合可视化。 使用包括多个处理器的模拟器执行模拟,从仿真生成时空数据样本。 每个数据样本具有具有特定时间分辨率的时间戳的空间坐标和标签。 基于空间关系和相应标签中的至少一个将数据样本组装成数据流。 每个数据流被编码成多种格式,并且显示数据流的集成和自适应可视化,其中同时和同步地显示各种数据流。

    Multi-compartment neurons with neural cores

    公开(公告)号:US09275330B2

    公开(公告)日:2016-03-01

    申请号:US13596278

    申请日:2012-08-28

    摘要: Embodiments of the invention provide a neural core circuit comprising a synaptic interconnect network including plural electronic synapses for interconnecting one or more source electronic neurons with one or more target electronic neurons. The interconnect network further includes multiple axon paths and multiple dendrite paths. Each synapse is at a cross-point junction of the interconnect network between a dendrite path and an axon path. The core circuit further comprises a routing module maintaining routing information. The routing module routes output from a source electronic neuron to one or more selected axon paths. Each synapse provides a configurable level of signal conduction from an axon path of a source electronic neuron to a dendrite path of a target electronic neuron.

    SCALABLE NEURAL HARDWARE FOR THE NOISY-OR MODEL OF BAYESIAN NETWORKS
    6.
    发明申请
    SCALABLE NEURAL HARDWARE FOR THE NOISY-OR MODEL OF BAYESIAN NETWORKS 有权
    贝叶斯网络噪声或模型的可伸缩神经硬件

    公开(公告)号:US20150286924A1

    公开(公告)日:2015-10-08

    申请号:US13562187

    申请日:2012-07-30

    摘要: Embodiments of the invention relate to a scalable neural hardware for the noisy-OR model of Bayesian networks. One embodiment comprises a neural core circuit including a pseudo-random number generator for generating random numbers. The neural core circuit further comprises a plurality of incoming electronic axons, a plurality of neural modules, and a plurality of electronic synapses interconnecting the axons to the neural modules. Each synapse interconnects an axon with a neural module. Each neural module receives incoming spikes from interconnected axons. Each neural module represents a noisy-OR gate. Each neural module spikes probabilistically based on at least one random number generated by the pseudo-random number generator unit.

    摘要翻译: 本发明的实施例涉及用于贝叶斯网络的噪声-OR模型的可伸缩神经硬件。 一个实施例包括神经核心电路,其包括用于产生随机数的伪随机数发生器。 神经核心电路还包括多个进入的电子轴突,多个神经模块和将轴突与神经模块相互连接的多个电子突触。 每个突触将轴突与神经模块相互连接。 每个神经模块从相互联系的轴突接收进入的尖峰。 每个神经模块表示噪声或门。 每个神经模块基于由伪随机数发生器单元生成的至少一个随机数来概率地尖峰。

    Multi-processor cortical simulations with reciprocal connections with shared weights
    7.
    发明授权
    Multi-processor cortical simulations with reciprocal connections with shared weights 有权
    多处理器皮质模拟与共享权重的互惠连接

    公开(公告)号:US08924322B2

    公开(公告)日:2014-12-30

    申请号:US13524798

    申请日:2012-06-15

    IPC分类号: G06N3/00 G06N3/02 G06N3/06

    摘要: Embodiments of the invention relate to distributed simulation frameworks that provide reciprocal communication. One embodiment comprises interconnecting neuron groups on different processors via a plurality of reciprocal communication pathways, and facilitating the exchange of reciprocal spiking communication between two different processors using at least one Ineuron module. Each processor includes at least one neuron group. Each neuron group includes at least one electronic neuron.

    摘要翻译: 本发明的实施例涉及提供相互通信的分布式仿真框架。 一个实施例包括经由多个相互通信路径在不同处理器上互连神经元组,并且促进使用至少一个Ineuron模块交换两个不同处理器之间的相互加速通信。 每个处理器包括至少一个神经元组。 每个神经元组包括至少一个电子神经元。

    CANONICAL SPIKING NEURON NETWORK FOR SPATIOTEMPORAL ASSOCIATIVE MEMORY

    公开(公告)号:US20120109863A1

    公开(公告)日:2012-05-03

    申请号:US12828091

    申请日:2010-06-30

    IPC分类号: G06N3/063 G06N3/08

    CPC分类号: G06N3/049 G06N3/063 G06N3/08

    摘要: Embodiments of the invention relate to canonical spiking neurons for spatiotemporal associative memory. An aspect of the invention provides a spatiotemporal associative memory including a plurality of electronic neurons having a layered neural net relationship with directional synaptic connectivity. The plurality of electronic neurons configured to detect the presence of a spatiotemporal pattern in a real-time data stream, and extract the spatiotemporal pattern. The plurality of electronic neurons are further configured to, based on learning rules, store the spatiotemporal pattern in the plurality of electronic neurons, and upon being presented with a version of the spatiotemporal pattern, retrieve the stored spatiotemporal pattern.

    Scalable neural hardware for the noisy-OR model of Bayesian networks
    9.
    发明授权
    Scalable neural hardware for the noisy-OR model of Bayesian networks 有权
    贝叶斯网络噪声或模型的可扩展神经硬件

    公开(公告)号:US09189729B2

    公开(公告)日:2015-11-17

    申请号:US13562187

    申请日:2012-07-30

    摘要: Embodiments of the invention relate to a scalable neural hardware for the noisy-OR model of Bayesian networks. One embodiment comprises a neural core circuit including a pseudo-random number generator for generating random numbers. The neural core circuit further comprises a plurality of incoming electronic axons, a plurality of neural modules, and a plurality of electronic synapses interconnecting the axons to the neural modules. Each synapse interconnects an axon with a neural module. Each neural module receives incoming spikes from interconnected axons. Each neural module represents a noisy-OR gate. Each neural module spikes probabilistically based on at least one random number generated by the pseudo-random number generator unit.

    摘要翻译: 本发明的实施例涉及用于贝叶斯网络的噪声-OR模型的可伸缩神经硬件。 一个实施例包括神经核心电路,其包括用于产生随机数的伪随机数发生器。 神经核心电路还包括多个输入电子轴突,多个神经模块以及将轴突与神经模块互连的多个电子突触。 每个突触将轴突与神经模块相互连接。 每个神经模块从相互联系的轴突接收进入的尖峰。 每个神经模块表示噪声或门。 每个神经模块基于由伪随机数发生器单元生成的至少一个随机数来概率地尖峰。

    MULTI-COMPARTMENT NEURONS WITH NEURAL CORES
    10.
    发明申请

    公开(公告)号:US20150262059A1

    公开(公告)日:2015-09-17

    申请号:US13596278

    申请日:2012-08-28

    IPC分类号: G06N3/063 G06F9/445 G06N3/04

    摘要: Embodiments of the invention provide a neural core circuit comprising a synaptic interconnect network including plural electronic synapses for interconnecting one or more source electronic neurons with one or more target electronic neurons. The interconnect network further includes multiple axon paths and multiple dendrite paths. Each synapse is at a cross-point junction of the interconnect network between a dendrite path and an axon path. The core circuit further comprises a routing module maintaining routing information. The routing module routes output from a source electronic neuron to one or more selected axon paths. Each synapse provides a configurable level of signal conduction from an axon path of a source electronic neuron to a dendrite path of a target electronic neuron.