摘要:
There is disclosed fiber optic sensor which detects a sample in contact with the sensor by surface plasmon resonance (SPR) measurements, as well as methods and apparatus relating thereto. The fiber optic SPR sensor of this invention employs a limited range of incident angles and uses incident light having multiple wavelengths. In preferred embodiments, both an in-line transmission-based fiber optic SPR sensor and a terminated reflection-based fiber optic SPR sensor are disclosed. The fiber optic SPR sensor includes a surface plasmon supporting metal layer in contact with an exposed portion of the optical fiber core, and may optionally contain one or more additional layers deposited on the surface plasmon supporting metal layer. In further embodiments, methods are disclosed for detecting a sample by contacting the sample with the fiber optic SPR sensor of this invention, as well as sensing apparatus which contain the fiber optic SPR sensor in combination with a source of electromagnetic radiation of multiple wavelengths and a detection device.
摘要:
There is disclosed fiber optic sensor which detects a sample in contact with the sensor by surface plasmon resonance (SPR) measurements, as well as methods and apparatus relating thereto. The fiber optic SPR sensor of this invention employs a limited range of incident angles and uses incident light having multiple wavelengths. In preferred embodiments, both an in-line transmission-based fiber optic SPR sensor and a terminated reflection-based fiber optic SPR sensor are disclosed. The fiber optic SPR sensor includes a surface plasmon supporting metal layer in contact with an exposed portion of the optical fiber core, and may optionally contain one or more additional layers deposited on the surface plasmon supporting metal layer. In further embodiments, methods are disclosed for detecting a sample by contacting the sample with the fiber optic SPR sensor of this invention, as well as sensing apparatus which contain the fiber optic SPR sensor in combination with a source of electromagnetic radiation of multiple wavelengths and a detection device.
摘要:
There is disclosed fiber optic sensor which detects a sample in contact with the sensor by surface plasmon resonance (SPR) measurements, as well as methods and apparatus relating thereto. The fiber optic SPR sensor of this invention employs a limited range of incident angles and uses incident light having multiple wavelengths. In preferred embodiments, both an in-line transmission-based fiber optic SPR sensor and a terminated reflection-based fiber optic SPR sensor are disclosed. The fiber optic SPR sensor includes a surface plasmon supporting metal layer in contact with an exposed portion of the optical fiber core, and may optionally contain one or more additional layers deposited on the surface plasmon supporting metal layer. In further embodiments, methods are disclosed for detecting a sample by contacting the sample with the fiber optic SPR sensor of this invention, as well as sensing apparatus which contain the fiber optic SPR sensor in combination with a source of electromagnetic radiation of multiple wavelengths and a detection device.
摘要:
A flow imaging system is used to implement surface plasmon resonance (SPR) detection to study bio-molecular interactions. The flow imaging system is used to capture SPR absorption spectra of large numbers of objects, where each object includes both a metal film capable of exhibiting SPR, and detecting molecules. Analyte molecules are added to a solution of such objects, and the result is introduced into the flow imaging system which collects full SPR spectral data from individual objects. The objects can be nanoparticles or larger particles that support metal island films. The SPR spectral data can be used to determine specificity, kinetics, affinity, and concentration with respect to the interactions between the detecting molecules and the analyte molecules.
摘要:
A flow imaging system is used to implement surface plasmon resonance (SPR) detection to study bio-molecular interactions. The flow imaging system is used to capture SPR absorption spectra of large numbers of objects, where each object includes both a metal film capable of exhibiting SPR, and detecting molecules. Analyte molecules are added to a solution of such objects, and the result is introduced into the flow imaging system which collects full SPR spectral data from individual objects. The objects can be nanoparticles or larger particles that support metal island films. The SPR spectral data can be used to determine specificity, kinetics, affinity, and concentration with respect to the interactions between the detecting molecules and the analyte molecules.