Abstract:
An active imaging system, which includes a light source and light sensor, generates structured illumination. The light sensor captures transient light response data regarding reflections of light emitted by the light source. The transient light response data is wavelength-resolved. One or more processors process the transient light response data and data regarding the structured illumination to calculate a reflectance spectra map of an occluded surface. The processors also compute a 3D geometry of the occluded surface.
Abstract:
In exemplary implementations of this invention, a time of flight camera (ToF camera) can estimate the location, motion and size of a hidden moving object, even though (a) the hidden object cannot be seen directly (or through mirrors) from the vantage point of the ToF camera (including the camera's illumination source and sensor), and (b) the object is in a visually cluttered environment. The hidden object is a NLOS (non-line-of-sight) object. The time of flight camera comprises a streak camera and a laser. In these exemplary implementations, the motion and absolute locations of NLOS moving objects in cluttered environments can be estimated through tertiary reflections of pulsed illumination, using relative time differences of arrival at an array of receivers. Also, the size of NLOS moving objects can be estimated by backprojecting extremas of NLOS moving object time responses.
Abstract:
An active imaging system, which includes a light source and light sensor, generates structured illumination. The light sensor captures transient light response data regarding reflections of light emitted by the light source. The transient light response data is wavelength-resolved. One or more processors process the transient light response data and data regarding the structured illumination to calculate a reflectance spectra map of an occluded surface. The processors also compute a 3D geometry of the occluded surface.
Abstract:
In exemplary implementations of this invention, a time of flight camera (ToF camera) can estimate the location, motion and size of a hidden moving object, even though (a) the hidden object cannot be seen directly (or through mirrors) from the vantage point of the ToF camera (including the camera's illumination source and sensor), and (b) the object is in a visually cluttered environment. The hidden object is a NLOS (non-line-of-sight) object. The time of flight camera comprises a streak camera and a laser. In these exemplary implementations, the motion and absolute locations of NLOS moving objects in cluttered environments can be estimated through tertiary reflections of pulsed illumination, using relative time differences of arrival at an array of receivers. Also, the size of NLOS moving objects can be estimated by backprojecting extremas of NLOS moving object time responses.
Abstract:
In exemplary implementations of this invention, a 3D range camera “looks around a corner” to image a hidden object, using light that has bounced (reflected) off of a diffuse reflector. The camera can recover the 3D structure of the hidden object.
Abstract:
In exemplary implementations of this invention, a set of two scanning mirrors scans the one dimensional field of view of a streak camera across a scene. The mirrors are continuously moving while the camera takes streak images. Alternately, the mirrors may only between image captures. An illumination source or other captured event is synchronized with the camera so that for every streak image the scene looks different. The scanning assures that different parts of the scene are captured.
Abstract:
In exemplary implementations of this invention, a set of two scanning mirrors scans the one dimensional field of view of a streak camera across a scene. The mirrors are continuously moving while the camera takes streak images. Alternately, the mirrors may only between image captures. An illumination source or other captured event is synchronized with the camera so that for every streak image the scene looks different. The scanning assures that different parts of the scene are captured.
Abstract:
In exemplary implementations of this invention, a 3D range camera “looks around a corner” to image a hidden object, using light that has bounced (reflected) off of a diffuse reflector. The camera can recover the 3D structure of the hidden object.
Abstract:
In illustrative implementations of this invention, an imaging system includes multiple light sources that illuminate a scene, and also includes a lock-in time of flight camera. While the scene is illuminated by these light sources, each of the light sources is amplitude-modulated by a different modulation pattern, and a reference signal is applied to the lock-in time-of-flight camera. The modulation patterns and the reference signal are carefully chosen such that the imaging system is able to disentangle, in real time, the respective contributions of the different light sources, and to compute, in real-time, depth of the scene. In some cases, the modulation signals for the light sources are orthogonal to each other and the reference signal is broadband. In some cases, the modulation codes for the light sources and the reference code are optimal codes that are determined by an optimization algorithm.
Abstract:
In exemplary implementations of this invention, a light field camera uses a light field dictionary to reconstruct a 4D light field from a single photograph. The light field includes both angular and spatial information and has a spatial resolution equal to the spatial resolution of the imaging sensor. Light from a scene passes through a coded spatial light modulator (SLM) before reaching an imaging sensor. Computer processors reconstruct a light field. This reconstruction includes computing a sparse or compressible coefficient vector using a light field dictionary matrix. Each column vector of the dictionary matrix is a light field atom. These light field atoms each, respectively, comprise information about a small 4D region of a light field. Reconstruction quality may be improved by using an SLM that is as orthogonal as possible to the dictionary.