摘要:
Apparatus and process for detecting scene breaks in a sequence of video frames providing a moving picture. Entering and exiting edge pixels in each of a plurality of successive video frames are counted, and an edge change fraction for each of the successive video frames is derived therefrom. Peaks which are detected in the edge change fractions are indicative of scene breaks.
摘要:
Systems and method can be employed to automatically extract radiation dose information from medical images, particularly a plurality of heterogeneous CT images including those from legacy CT scanners. A report including the extracted radiation dose information can be generated, and alerts can be sent to reduce the possibility of overexposures.
摘要:
In time-resolved contrast-enhanced magnetic resonance angiography, a measure quantifying image quality provides a basis for generating a linear filtered composite image by facilitating selection of a mask and an arterial phase image for subtraction. Filtering of individual pixels of a temporal series of images provides enhanced contrast in a single image by allowing the temporal behavior of the pixel intensity to denote representation as an artery, vein or background tissue. Motion artifacts are suppressed by re-registering sequential images, adjusting weighting before averaging and subtraction and filtering the Fourier data to eliminate data corrupted by motion or other phenomena.
摘要:
An efficient navigator method is presented that substantially increases the scan efficiency while maintaining the motion suppression effectiveness in magnetic resonance imaging. The method is achieved by simultaneously acquiring different image volumes at different motion states of the subject being scanned. A scheduling algorithm is used to assign volumes to position bins of a motion histogram of the subject. The motion histogram is periodically updated and the volumes are reassigned to position bins.
摘要:
An invention for quantitatively analyzing bitmap images using computer vision is disclosed. In one embodiment, these bitmap images correspond to the rendered screens of two applications based on a same data source file. An optional preprocessing step filters non-important information for analyzing purposes such as the background, replaces each image with a blank image of the same size, and modifies non-visible attributes of a screen so their structure can be recovered during the computer vision processing. After a series of rendered screens of each application are captured, these bitmap images are interpreted using computer vision techniques to produce machine-readable visual attributes of the rendered screens. Corresponding attributes from each of the two applications are then compared to generate a set of differences, where those differences within a predefined set of deliberate design differences are ignored. These attributes and differences are then processed to derive a set of grades reflecting the similarities between the rendered screens of the two applications. In determining these grades, a set of user-definable thresholds are used to overlook small variances inherent in the rendering by the different applications.
摘要:
In time-resolved contrast-enhanced magnetic resonance angiography, a measure quantifying image quality provides a basis for generating a linear filtered composite image by facilitating selection of a mask and an arterial phase image for subtraction. Filtering of individual pixels of a temporal series of images provides enhanced contrast in a single image by allowing the temporal behavior of the pixel intensity to denote representation as an artery, vein or background tissue. Motion artifacts are suppressed by re-registering sequential images, adjusting weighting before averaging and subtraction and filtering the Fourier data to eliminate data corrupted by motion or other phenomena.
摘要:
In time-resolved contrast-enhanced magnetic resonance angiography, a measure quantifying image quality provides a basis for generating a linear filtered composite image by facilitating selection of a mask and an arterial phase image for subtraction. Filtering of individual pixels of a temporal series of images provides enhanced contrast in a single image by allowing the temporal behavior of the pixel intensity to denote representation as an artery, vein or background tissue. Motion artifacts are suppressed by re-registering sequential images, adjusting weighting before averaging and subtraction and filtering the Fourier data to eliminate data corrupted by motion or other phenomena.