Abstract:
A thigh compression device and technique to control, time, delay and/or prevent excessive early venous enhancement relative to arterial enhancement and thereby improve and/or enhance MRA images, including peripheral MRA images, is disclosed. In one embodiment, the present invention uses a curved strip of material which is longer on the superior edge and shorter along the inferior edge. When wrapped around the conical shape of the thigh of a subject, for example, a human, the thigh compression device more uniformly conforms to and/or fits around the thigh, providing more even/uniform compression as well as reducing, minimizing and/or eliminating significant movement of the thigh compression device towards the knees of the subject. A snug fit on the thighs may also enable the thigh compression device to be inflated with less fluid, which is faster and less cumbersome for the operator.
Abstract:
A thigh compression device and technique to control, time, delay and/or prevent excessive early venous enhancement relative to arterial enhancement and thereby improve and/or enhance MRA images, including peripheral MRA images, is disclosed. In one embodiment, the present invention uses a curved strip of material which is longer on the superior edge and shorter along the inferior edge. When wrapped around the conical shape of the thigh of a subject, for example, a human, the thigh compression device more uniformly conforms to and/or fits around the thigh, providing more even/uniform compression as well as reducing, minimizing and/or eliminating significant movement of the thigh compression device towards the knees of the subject. A snug fit on the thighs may also enable the thigh compression device to be inflated with less fluid, which is faster and less cumbersome for the operator.
Abstract:
There are many inventions described herein as well as many aspects and embodiments of those inventions. A thigh compression device and technique to control, time, delay and/or prevent excessive early venous enhancement relative to arterial enhancement and thereby improve and/or enhance MRA images, including peripheral MRA images. In one embodiment, the present invention uses a curved strip of material which is longer on the superior edge and shorter along the inferior edge. When wrapped around the conical or conal-like shape of the thigh of a subject (for example, a human), the thigh compression device more uniformly conforms to and/or fits around the thigh, providing more even/uniform compression as well as reducing, minimizing and/or eliminating significant movement of the thigh compression device towards the knees of the subject. Notably, a snug fit on the thighs may also enable the thigh compression device to be inflated with less fluid (for example, air) which is faster and less cumbersome for the operator.
Abstract:
Systems and methods for contrast-enhanced magnetic resonance angiography in which both arterial-phase image data and post-contrast image data is collected.
Abstract:
The present invention is a technique of, and system for, imaging vascular anatomy over distance considerably greater than the maximum practical field of view of a magnetic resonance imaging system while using substantially one contrast agent injection. The technique and system of the present invention acquires image data of a plurality of image volumes which are representative of different portions of the patient's body. The image data of each image volume includes image data which is representative of the center of k-space. The acquisition of image data which is representative of the center of k-space is correlated with a concentration of contrast agent in the artery(ies) residing in the image volume being substantially greater than the concentration of contrast agent in veins and background tissue adjacent to the artery(ies). This provides preferential enhancement of arteries relative to adjacent veins and background tissue for each acquisition, wherein each acquisition is representative of a different portion of the arterial system (e.g., abdominal aorta, femoral, popliteal, and tibial arteries).
Abstract:
In time-resolved contrast-enhanced magnetic resonance angiography, a measure quantifying image quality provides a basis for generating a linear filtered composite image by facilitating selection of a mask and an arterial phase image for subtraction. Filtering of individual pixels of a temporal series of images provides enhanced contrast in a single image by allowing the temporal behavior of the pixel intensity to denote representation as an artery, vein or background tissue. Motion artifacts are suppressed by re-registering sequential images, adjusting weighting before averaging and subtraction and filtering the Fourier data to eliminate data corrupted by motion or other phenomena.
Abstract:
The present invention is a technique of, and system for, imaging vascular anatomy over distance considerably greater than the maximum practical field of view of a magnetic resonance imaging system while using substantially one contrast agent injection. The technique and system of the present invention acquires image data of a plurality of image volumes which are representative of different portions of the patient's body. The image data of each image volume includes image data which is representative of the center of k-space. The acquisition of image data which is representative of the center of k-space is correlated with a concentration of contrast agent in the artery(ies) residing in the image volume being substantially greater than the concentration of contrast agent in veins and background tissue adjacent to the artery(ies). This provides preferential enhancement of arteries relative to adjacent veins and background tissue for each acquisition, wherein each acquisition is representative of a different portion of the arterial system (e.g., abdominal aorta, femoral, popliteal, and tibial arteries).
Abstract:
The present invention is a technique and apparatus for providing preferential enhancement of an artery of interest relative to adjacent veins and background tissue by correlating the collection of a predetermined portion of data of a magnetic resonance contrast image during the arterial phase of the magnetic resonance contrast enhancement. The arterial phase of the contrast enhancement may be described as a period of a maximum, substantially elevated, or elevated contrast concentration in the artery of interest relative to adjacent veins. The present invention includes a detection system for monitoring and detecting the arrival of the contrast agent in the artery and tissues of interest. When the concentration of contrast agent in the artery of the region of interest is maximum, substantially elevated or elevated (e.g., about 20-50% greater than the response of the region of interest to a series of magnetic resonance pulses before administration of a magnetic resonance contrast agent), a predetermined portion of the magnetic resonance image data (e.g., data which is representative of the center of k-space) may be acquired. Thus, the present invention facilitates synchronization between collecting the central portion of k-space image data with the arterial phase of contrast enhancement. The center of k-space corresponds to the lowest spatial frequency data which dominates image contrast.
Abstract:
The present invention is a technique of, and system for, imaging vascular anatomy over distance considerably greater than the maximum practical field of view of a magnetic resonance imaging system while using substantially one contrast agent injection. The technique and system of the present invention acquires image data of a plurality of image volumes which are representative of different portions of the patient's body. The image data of each image volume includes image data which is representative of the center of k-space. The acquisition of image data which is representative of the center of k-space is correlated with a concentration of contrast agent in the artery(ies) residing in the image volume being substantially greater than the concentration of contrast agent in veins and background tissue adjacent to the artery(ies). This provides preferential enhancement of arteries relative to adjacent veins and background tissue for each acquisition, wherein each acquisition is representative of a different portion of the arterial system (e.g., abdominal aorta, femoral, popliteal, and tibial arteries).
Abstract:
The present invention is a technique and apparatus for monitoring and detecting the arrival of a contrast agent in a region of interest (e.g., an artery or tissues of interest). In one embodiment, upon detecting a maximum, substantially elevated or elevated concentration of contrast agent in the region of interest, a predetermined portion of the magnetic resonance image data (e.g., data which is representative of the center of k-space) may be acquired. Thus, the present invention may be employed to facilitate synchronization between collecting the central portion of k-space image data with the arterial phase of contrast enhancement.