摘要:
The magnetic device consists of a planar winding board, which contains the windings for both the inductor and the transformer. Thus, this invention centers on integrating the windings of multiple magnetic devices, not integrating the cores. By connecting the transformer secondary winding directly to the output inductor winding without using any intermediate headers and/or termination pins or conductive copper traces, both electrical path and the termination resistance will be minimized. Furthermore, the number of headers or termination pins required will also be reduced, which helps to not only alleviate the issue associated with co-planarity of the termination pins, but also reduce the cost of the material and manufacturing.
摘要:
For use in a power converter having a rectifier coupled to an output thereof, a snubber circuit including an energy storage device coupled to the rectifier that moderates a voltage across the rectifier and a method of moderating the voltage. In one embodiment, the snubber circuit includes: (1) a first switch that regulates a voltage across the energy storage device, (2) an inductor, coupled to the first switch, that provides a discharge path for energy stored in the energy storage device when the first switch is conducting and (3) a second switch that recovers energy stored in the inductor to the output when the first switch is not conducting. The snubber circuit thereby reduces voltage stress across the rectifier during a current limit mode of operation.
摘要:
The invention presents a highly efficient, tightly regulated DC-to-DC converter which can be used in various applications, especially multiple output converters. The converter uses a buck converter to produce an intermediate bus voltage. A current-fed double ended circuit, such as bridge or push-pull circuit, couples to the buck converter to provide power to outputs. The double ended circuit operates at about 50% duty. The secondary output filter inductor is not required. With 50% duty cycle operation, the secondary rectifiers are easily controlled by either a self-driven or an external driven circuit. The secondary windings can also be stacked up to simplify the transformer design. In addition, bias voltages needed for control circuitry can also be obtained by adding extra windings to the power transformer and extra rectifier devices.