摘要:
There are disclosed therapeutic compositions and methods using isolated nucleic acid molecules encoding a human myeloid progenitor inhibitory factor-1 (MPIF-1) polypeptide (previously termed MIP-3 and chemokine β8 (CKβ8 or ckb-8)); a human monocyte-colony inhibitory factor (M-CIF) polypeptide (previously termed MIP1-γ and chemokine β1(CKβ1 or ckb-1)), and a macrophage inhibitory protein-4 (MIP-4), as well as MPIF-1, M-CIF and/or MIP-4 polypeptides themselves, as are vectors, host cells and recombinant methods for producing the same.
摘要:
There are disclosed therapeutic compositions and methods using isolated nucleic acid molecules encoding a human myeloid progenitor inhibitory factor-1 (MPIF-1) polypeptide (previously termed MIP-3 and chemokine β8 (CKβ8 or ckb-8)); a human monocyte-colony inhibitory factor (M-CIF) polypeptide (previously termed MIP1-γ and chemokine β1 (CKβ1 or ckb-1)), and a macrophage inhibitory protein-4 (MIP-4), as well as MPIF-1, M-CIF and/or MIP-4 polypeptides themselves, as are vectors, host cells and recombinant methods for producing the same.
摘要:
There are disclosed therapeutic compositions and methods using a human monocyte-colony inhibitory factor (M-CIF) polypeptide (previously termed MIP1-&ggr; chemokine &bgr;1(CK&bgr;1 or ckb-1)), as well as ioslated nucleic acid molecules encoding M-CIF, and vectors, host cells and recombinant methods for producing the same.
摘要:
There are disclosed therapeutic compositions and methods using isolated nucleic acid molecules encoding a human myeloid progenitor inhibitory factor-1 (MPIF-1) polypeptide (previously termed MIP-3 and chemokine β8 (CKβ8 or ckb-8)); a human monocyte-colony inhibitory factor (M-CIF) polypeptide (previously termed MIP1-γ and chemokine β1 (CKβ1 or ckb-1)), and a macrophage inhibitory protein-4 (MIP-4), as well as MPIF-1, M-CIF and/or MIP-4 polypeptides themselves, as are vectors, host cells and recombinant methods for producing the same.
摘要:
There are disclosed therapeutic compositions and methods using isolated nucleic acid molecules encoding a human myeloid progenitor inhibitory factor-1 (MPIF-1) polypeptide (previously termed MIP-3 and chemokine β8 (CKβ8 or ckb-8)); a human monocyte-colony inhibitory factor (M-CIF) polypeptide (previously termed MIP1-γ and chemokine β1 (CKβ1 or ckb-1)), and a macrophage inhibitory protein-4 (MIP-4), as well as MPIF-1, M-CIF and/or MIP-4 polypeptides themselves, as are vectors, host cells and recombinant methods for producing the same.
摘要:
There are disclosed therapeutic compositions and methods using isolated nucleic acid molecules encoding a human myeloid progenitor inhibitory factor-1 (MPIF-1) polypeptide (previously termed MIP-3 and chemokine β8 (CKβ8 or ckb-8)); a human monocyte-colony inhibitory factor (M-CIF) polypeptide (previously termed MIP1-γ and chemokine β1(CKβ1 or ckb-1)), and a macrophage inhibitory protein-4 (MIP-4), as well as MPIF-1, M-CIF and/or MIP-4 polypeptides themselves, as are vectors, host cells and recombinant methods for producing the same.
摘要:
The present invention relates to deletion and substitution mutant polypeptides of human chemokine β-7 (Ckβ-7), as well as nucleic acid molecules encoding such polypeptides and processes for producing such polypeptides using recombinant techniques. In one aspect, the invention also relates to uses of the full-length and mature forms of Ckβ-7, as well as deletion and substitution mutants, in medical treatment regimens. In particular, the Ckβ-7 polypeptides described herein may be employed to treat a variety of conditions, including rheumatoid arthritis, inflammation, respiratory diseases, allergy, and IgE-mediated allergic reactions.
摘要:
A method to increase the efficiency of transduction of hematopoietic and other cells by retroviruses includes infecting the cells in the presence of fibronectin or fibornectin fragments. The fibronectin and fibronectin fragments significantly enhance retroviral-mediated gene transfer into the cells, particularly hematopoietic cells including committed progenitors and primitive hematopoietic stem cells. The invention also provides improved methods for somatic gene therapy capitalizing on enhanced gene transfer, hematopoietic cellular populations, and novel constructs for enhancing retroviral-mediated DNA transfer into cells and their use.