Abstract:
A device for inflating and deflating a flexible container which is elastically expandable for introduction of pressurized fluid into an internal volume of the container is described. The device is housed inside a cavity isolable from a surrounding environment, the device being inserted in a wall of the container. Pressurized fluid can flow from the surrounding environment into the cavity and from the cavity out to the surrounding environment. The device does not have elements for connecting the internal volume of the container and the surrounding environment.
Abstract:
A belt structure for a two-wheeled vehicle made by means of strip-like segments or elements, each including parallel cords embedded in an elastomeric layer, sequentially laid along the circumferential extension of a toroidal support so as to form a reinforcing layer having a continuous circumferential extension around a geometric rotation axis of the toroidal support, wherein each strip-like element is laid in a laying trajectory defining, at each point, a laying angle; at each point of the laying trajectory a laying gap is formed between adjacent strip-like elements; the laying trajectory is formed starting from preselected laying angles on the shoulder and on the crown of the tire; the laying gap between adjacent strip-like elements varies along at least one length of said laying trajectory between crown and shoulder so as to cause variation of the laying angle and obtain the preselected angles on the shoulder and on the crown.
Abstract:
A method of molding and curing a tire for a vehicle wheel includes building an unvulcanized tire on a toroidal support; heating the support; pressing an inner surface of the tire against an outer surface of the support; and pressing an outer surface of the tire against walls of a molding cavity defined in a vulcanization mold. The inner surface of the tire is pressed against the outer surface by at least one secondary working fluid. The outer surface of the tire is pressed against the walls by at least one primary working fluid. The at least one primary working fluid is heated, causing vulcanization of the tire. An apparatus for molding and curing a tire for a vehicle wheel includes the vulcanization mold, at least one passage device, a feeding device, and first and second heating devices. It may also include an airtight device arranged to receive the support.
Abstract:
A method for controlling a manufacturing process of components of a tire for vehicle wheels, wherein at least one elongated element fed by a dispensing member is distributed onto a forming support by means of at least one pressing member acting on the at least one elongated element along a pressing direction. The method includes the steps of substantially continuously detecting the value of a characteristic quantity indicative of the displacement of the at least one pressing member along the pressing direction, comparing the detected value of the characteristic quantity with a threshold value and generating a warning signal when the detected value of the characteristic quantity exceeds the threshold value. Such a control method allows the presence of possible deposition anomalies to be identified right from the deposition step of the elongated elements on the forming support so as to ensure ever higher quality levels in tires manufactured through continuous processes.
Abstract:
In the manufacture of a tire, a belt structure is made by means of strip-like segments or elements, each comprising parallel cords embedded in an elastomeric layer, sequentially laid along the circumferential extension of a toroidal support, in such a manner that: each strip-like element is laid in a laying trajectory defining, at each point, a laying angle; at each point of the laying trajectory a laying gap is formed between adjacent strip-like elements, the laying trajectory being formed starting from preselected laying angles on the shoulder and on the crown of the tire, the laying gap between adjacent strip-like elements varying along at least one section of the laying trajectory between crown and shoulder so as to cause variation of the laying angle and to obtain the preselected angles on the shoulder and on the crown.
Abstract:
A method for manufacturing a reinforcing structure for tires of vehicles includes the steps of preparing a plurality of strip segments having substantially parallel, longitudinal filiform elements at least partially coated by at least one layer of elastomeric material, and applying the plurality of strip segments along a circumference of a toroidal support, to form at least one continuous reinforcing layer about a geometric axis of rotation of the toroidal support. During the applying step, a relative angular rotation, between at least one of the plurality of strip segments and the toroidal support, occurs about an axis of correction substantially radial to the geometric axis of rotation. A related apparatus for manufacturing a reinforcing structure for tyres of vehicles is also disclosed.