摘要:
A wireless communication network provides priority for one type of users over another type of users relative to one or more network finite resources shared by the different types of users. For example, if the available forward link transmit power at a radio base station is being shared by voice and data users, the radio base station may give priority to the voice users by reducing the aggregate amount of power allocated to current data users if the combined level of power usage by the voice and data users reaches a defined release threshold. The release threshold may be set at a call-blocking threshold, such that dynamic release is invoked if the call-blocking level is reached. Other limited resources can be managed similarly, such as by setting a release threshold relative to spreading code usage, etc.
摘要:
In a wireless communication network providing voice and data services, one or more entities in the network, such as a base station controller and/or radio base station, can be configured to reduce data services overhead responsive to detecting a congestion condition, thereby increasing the availability of one or more network resources for voice services. In one or more exemplary embodiments, one or more current data services users are targeted for modification of their ongoing data services to effect the reduction in data services overhead. Modifications can include, but are not limited to, any one or more of the following: forward or reverse link data rate reductions, and shifting of forward or reverse link traffic from dedicated user channels to shared user channels. Targeting of users for service modification can be based on reported channel quality information. For example, users reporting poor radio conditions can be targeted first for service modifications.
摘要:
In a wireless communication network providing voice and data services, one or more entities in the network, such as a base station controller and/or radio base station, can be configured to reduce data services overhead responsive to detecting a congestion condition, thereby increasing the availability of one or more network resources for voice services. In one or more exemplary embodiments, one or more current data services users are targeted for modification of their ongoing data services to effect the reduction in data services overhead. Modifications can include, but are not limited to, any one or more of the following: forward or reverse link data rate reductions, and shifting of forward or reverse link traffic from dedicated user channels to shared user channels. Targeting of users for service modification can be based on reported channel quality information. For example, users reporting poor radio conditions can be targeted first for service modifications.
摘要:
Admission control is performed on a forward link shared packet data channel based on the measured delay per unit of data transmitted on the channel or the data throughput on the channel. In another embodiment, statistical analyses of channel quality metrics received at a base station are compared to the data rate used to serve mobile stations on the packet data channel to perform admission control. In any case, admission control may be performed for a new call setup request, hard handoff or virtual handoff. Admission control may be performed independently for a plurality of Quality of Service (QoS) flow categories, such as real time, best effort, rate sensitive, or QoS categories defined by cost. Users may be allocated among QoS flow categories as necessary to maintain performance.
摘要:
Admission control is performed on a forward link shared packet data channel based on the measured delay per unit of data transmitted on the channel or the data throughput on the channel. In another embodiment, statistical analyses of channel quality metrics received at a base station are compared to the data rate used to serve mobile stations on the packet data channel to perform admission control. In any case, admission control may be performed for a new call setup request, hard handoff or virtual handoff. Admission control may be performed independently for a plurality of Quality of Service (QoS) flow categories, such as real time, best effort, rate sensitive, or QoS categories defined by cost. Users may be allocated among QoS flow categories as necessary to maintain performance.
摘要:
A radio base station (RBS) provides dynamic rate adaptation for rate-adjustable communication channels used to transmit information to remote mobile stations based on monitoring transmit power information associated with those channels. For a given channel, the RBS tracks an average channel power on a per transmit frame basis and compares the average to first and second rate adjustment thresholds, which comparisons trigger downward or upward rate adjustments. Similar operation also may be based on averaging the power control commands returned by the mobile station, which indicate whether the channel's power as received by the mobile station is or is not sufficient with respect to a desired signal quality. This method thus provides a mechanism for rapid rate adaptation without requiring explicit rate control signaling from the mobile stations.
摘要:
Reverse link reception and reverse link capacity are improved at a multi-sector radio base station (RBS) by forcing always-softer reverse link handoff conditions for mobile stations served by the RBS. Whenever a serving sector reverse link is assigned to a mobile station at the RBS, one or more additional reverse links are assigned to it from remaining sectors of the RBS. Such assignments are made irrespective of whether those sectors are, or could be, used to serve the mobile station on the forward link. The RBS improves its reception of the mobile station's reverse link transmissions by combining signals from all of the assigned reverse links. With improved reception, mobile stations can be commanded or configured to reduce their reverse link transmit power, thereby reducing reverse link interference and increasing reverse link capacity. Always-softer handoff may not be forced unless the mobile station has a reverse supplemental channel, since the use of such channels makes interference reduction particularly beneficial.
摘要:
A wireless communication network manages variable data rate communication channels using both short-term data rate adaptation and longer-term resource allocation adjustment. For example, an exemplary base station system may track the actual transmit power being used to transmit a given communication channel on a per frame basis, or faster, and use that tracked value to infer changing channel conditions, e.g., for a given current data rate, higher power indicates poorer channel conditions and lower power indicates better channel conditions. Additionally, or alternatively, channel quality information reported by a receiving mobile station can be used. Regardless, relatively fast data rate changes can be made responsive to monitoring the channel conditions, while retaining the communication resource allocation for the channel. Over the longer term, however, the allocation itself can be changed, e.g., increased or decreased, depending on whether the channel is being efficiently utilized.
摘要:
Reverse link reception and reverse link capacity are improved at a multi-sector radio base station (RBS) by forcing always-softer reverse link handoff conditions for mobile stations served by the RBS. Whenever a serving sector reverse link is assigned to a mobile station at the RBS, one or more additional reverse links are assigned to it from remaining sectors of the RBS. Such assignments are made irrespective of whether those sectors are, or could be, used to serve the mobile station on the forward link. The RBS improves its reception of the mobile station's reverse link transmissions by combining signals from all of the assigned reverse links. With improved reception, mobile stations can be commanded or configured to reduce their reverse link transmit power, thereby reducing reverse link interference and increasing reverse link capacity. Always-softer handoff may not be forced unless the mobile station has a reverse supplemental channel, since the use of such channels makes interference reduction particularly beneficial.
摘要:
A wireless communication network manages variable data rate communication channels using both short-term data rate adaptation and longer-term resource allocation adjustment. For example, an exemplary base station system may track the actual transmit power being used to transmit a given communication channel on a per frame basis, or faster, and use that tracked value to infer changing channel conditions, e.g., for a given current data rate, higher power indicates poorer channel conditions and lower power indicates better channel conditions. Additionally, or alternatively, channel quality information reported by a receiving mobile station can be used. Regardless, relatively fast data rate changes can be made responsive to monitoring the channel conditions, while retaining the communication resource allocation for the channel. Over the longer term, however, the allocation itself can be changed, e.g., increased or decreased, depending on whether the channel is being efficiently utilized.