Abstract:
A digital frequency modulation receiver includes a phase capturer, an adder, a digital filter and a phase estimator. The phase estimator is used to generate a first phase value according to an input signal. The adder is coupled to the phase estimator for subtracting a second phase value from the first phase value to generate a phase difference. The digital filter is coupled to the adder for performing a filtering calculation with the phase difference so as to generate a frequency variation signal. The phase estimator is coupled to the digital filter and the adder so as to update the second phase value according to the frequency variation signal.
Abstract:
A digital frequency modulation receiver includes a phase capturer, an adder, a digital filter and a phase estimator. The phase estimator is used to generate a first phase value according to an input signal. The adder is coupled to the phase estimator for subtracting a second phase value from the first phase value to generate a phase difference. The digital filter is coupled to the adder for performing a filtering calculation with the phase difference so as to generate a frequency variation signal. The phase estimator is coupled to the digital filter and the adder so as to update the second phase value according to the frequency variation signal.
Abstract:
A digital frequency modulation receiver includes a phase capturer, an adder, a digital filter and a phase estimator. The phase estimator is used to generate a first phase value according to an input signal. The adder is coupled to the phase estimator for subtracting a second phase value from the first phase value to generate a phase difference. The digital filter is coupled to the adder for performing a filtering calculation with the phase difference so as to generate a frequency variation signal. The phase estimator is coupled to the digital filter and the adder so as to update the second phase value according to the frequency variation signal.
Abstract:
A bidirectional communication method between a master terminal and a slave terminal on a single transmission line includes the master terminal transmitting an initial message, a slave number and a master acknowledgement signal. After acknowledgement of the slave terminal, the master terminal transmits an address of the slave terminal and a master acknowledgement signal. After acknowledgement of the slave terminal, the master terminal transmits data and a master acknowledgement signal. After acknowledgement of the slave terminal, the master terminal transmits a master No-acknowledgement signal. And the slave terminal transmits a slave acknowledgement signal.
Abstract:
A bidirectional communication method between a master terminal and a slave terminal on a single transmission line includes the master terminal transmitting an initial message, a slave number and a master acknowledgement signal. After acknowledgement of the slave terminal, the master terminal transmits an address of the slave terminal and a master acknowledgement signal. After acknowledgement of the slave terminal, the master terminal transmits data and a master acknowledgement signal. After acknowledgement of the slave terminal, the master terminal transmits a master No-acknowledgement signal. And the slave terminal transmits a slave acknowledgement signal.
Abstract:
A signal transmitter includes a modulation circuit, a signal separation circuit, and a signal combining circuit. The modulation circuit modulates a first signal to a modulated signal. The signal separation circuit separates the modulated signal into N separated signals. The N separated signals have different phases. The signal combining circuit combines the N separated signals to eliminate at least one order of harmonic signals of the N separated signals so as to generate an output signal.
Abstract:
A digital frequency modulation receiver includes a phase capturer, an adder, a digital filter and a phase estimator. The phase estimator is used to generate a first phase value according to an input signal. The adder is coupled to the phase estimator for subtracting a second phase value from the first phase value to generate a phase difference. The digital filter is coupled to the adder for performing a filtering calculation with the phase difference so as to generate a frequency variation signal. The phase estimator is coupled to the digital filter and the adder so as to update the second phase value according to the frequency variation signal.