摘要:
A method and structure for probabilistic shaping and compensation techniques in coherent optical receivers. According to an example, the present invention provides a method and structure for an implementation of distribution matcher encoders and decoders for probabilistic shaping applications. The techniques involved avoid the traditional implementations based on arithmetic coding, which requires intensive multiplication functions. Furthermore, these probabilistic shaping techniques can be used in combination with LDPC codes through reverse concatenation techniques.
摘要:
A device includes a frequency offset (FO) estimation circuit and a frequency offset compensation circuit coupled with the frequency offset estimation circuit. The frequency offset compensation circuit is configured to (i) receive a continuous phase modulation (CPM) signal, (ii) receive, from the FO estimation circuit, an uncompensated frequency offset for a wth sampling window of the CPM signal, (iii) generate a frequency offset compensation value for a w+1st sampling window of the CPM signal based on the uncompensated frequency offset for the wth sampling window, (iv) adjust the CPM signal in the w+1st sampling window based on the frequency offset compensation value, and (v) provide the adjusted CPM signal to a filter.
摘要:
Digital receiver systems and clock recovery techniques for use in digital receiver systems are provided to implement asynchronous baud-rate clock recovery systems for high data rate serial receivers multilevel line modulation. A two-stage postcursor ISI equalization system is provided to efficiently emulate a 4-level DFE (decision feedback equalization) system, for example, while converting a 4-level equalized signal to s 2-level equalized signal. For example, a two stage postcursor ISI equalization system includes a DFE stage which operates on a most significant component of a given 4-level data symbol, followed by a DFFE (decision-feedforward equalizer) stage which operates on a least significant component of the given 4-level data symbol. In parallel with the DFFE stage, an estimate of the least significant component is subtracted from the equalized 4-level data symbol to convert the 4-level data symbol to a 2-level symbol.
摘要:
A method of dynamic range extension for heterodyne fiber-optic Interferometers, and more particularly towards the use of instantaneous carrier to extend the dynamic range of heterodyne fiber-optic interferometers. The method includes the providing of a heterodyne fiber-optic interferometer having a demodulator and an associated carrier frequency. The method also includes the determining of demodulator excessions. The detecting of the demodulator excessions and the determining of an appropriate correction factor is based on information from the instantaneous carrier frequency. The method also includes the introduction of the appropriate correction factor to the demodulator.
摘要:
The present invention discloses BPSK demodulator, which uses a delay circuit to delay a BPSK signal and mixes the delayed BPSK signal with the undelayed BPSK signal to output a demodulated data signal, and which uses a phase rotation circuit and the demodulated data signal to obtain a carrier clock signal. The operating frequency of the delay circuit is the same as or 0.5 times the carrier frequency. Therefore, the present invention consumes less power and is realized by digital circuits and analog circuits.
摘要:
During transmission of a signal, a decoder receives a data symbol sequence and one or more copies of the data symbol sequence. The data symbol sequence and each of the copies have unknown noise, including unknown phase shifts. The unknown phase shifts are estimated such that the data symbol sequence that was transmitted is substantially recovered.
摘要:
A phase adjuster arranges phases of waveforms of a complex signal after orthogonal transform. An edge detector detects an edge of the complex signal after phase adjustment. A phase shift detector detects phase shift of an output signal of the edge detector between the in-phase signal and the quadrature signal after the orthogonal transform, and outputs a phase error signal (PE). The oscillator connected to mixers and a shifter to perform the orthogonal transform includes a phase adjustment section adjusting an edge of a voltage controlled oscillator (VCO) clock based on the phase error signal (PE) and correcting the phase shift of an original signal.
摘要:
An apparatus for demodulating an analogue input signal comprises a hard limiter stage (4) for converting the signal to a two level signal. A digital down converter/low pass filter stage (6) converts the signal to a base band signal, and a symbol synchronization stage (8) extracts symbol timing. An instantaneous phase detector (10) calculates the instantaneous phase of the one or more symbols associated with the input signal. If the input signal has been modulated according to a pi/4DQPSK, pi/2DBPSK, GMSK, or a GFSK modulation scheme, a differential detector (12) determines a difference in the phase between adjacent symbols, a coarse frequency offset compensation stage (14) applies a compensation signal to compensate for frequency offset, and a frequency offset estimation stage (16) updates this compensation signal. A demapper (18) generates a demodulated output signal after compensation by the frequency offset compensation stage.
摘要:
Counter-clockwise and clockwise quadrant transitions are detected and accumulated with respect to a received complex signal over a certain time period. These transitions may then be compared in order to obtain information indicative of both a magnitude and phase of a carrier frequency error for the received signal. Additionally, zero-crossings of the received complex signal over the same certain time period are detected and accumulated. The accumulated crossings provide information indicative of frequency offset magnitude. The determined magnitude and phase of the frequency error may then be used to adjust a local oscillator frequency to provide for improved receiver performance.
摘要:
A method of correcting phase error of a phase shift keyed (PSK) signal includes (a) receiving a signal modulated by a spreading sequence; (b) despreading the received signal using a receiver spreading sequence similar to the spreading sequence of step (a); (c) calculating a crosscorrelation profile between the receiver spreading sequence and the received signal; and (d) calculating an autocorrelation profile of the receiver spreading sequence to determine a spreading code property (SCP). The method also includes (e) estimating a timing error in alignment between the autocorrelation and the crosscorrelation profiles; and (f) correcting a phase error of the signal despread in step (c), by using the SCP and the estimated timing error.