摘要:
A radiation shield assembly (30) for a radioactive stent (11) mounted onto a deployment portion (20) of a delivery apparatus (12) including a relatively thin, elongated tube member (69) having a wall (70) defining a receiving passage (72) formed and dimensioned for axial receipt of the stent mounted onto the deployment portion therein to substantially prevent direct contact with the stent (11). A removal structure (71) cooperating with the wall (70) of the tube member (69) for longitudinal severing thereof to enable selective removal of the tube member from the delivery apparatus (12) for deployment use thereof.
摘要:
A stent loading apparatus for loading a deformable stent onto a deployment device. The stent loading apparatus includes an elastic member defining a passage therein formed for longitudinal receipt of the deformable stent in an uncrimped condition. A first member includes a first compression region; and a second member includes a second compression region positioned substantially adjacent the first compression region at a first position. At this first position, the elastic member and the deformable stent in the uncrimped condition may be received between the opposed first and second compression regions. The first compression region and the second compression region are further configured to provide rolling support and compression of the elastic member during relative movement between the first position and a second position for rolling radial compression of the deformable stent onto the deployment device.
摘要:
A stent crimping apparatus for crimping a deformable radioactive stent onto a deployment device which includes a first jaw member defining a shielded first compression surface, and an opposed, second jaw member defining a shielded second compression surface oriented opposite the first compression surface. The first and second compression surfaces are adapted to collectively form an elongated guide bore formed for axial receipt of the deformable stent and the deployment device therein. To protect against exposure to the radioactive stent, a shield assembly is provided defining an opening into a bore therein which is formed and dimensioned for longitudinal receipt of the deformable stent in an uncrimped condition. A shield assembly defines an opening into the bore, and cooperates with the first and second jaw members to substantially prevent radioactive particles emitted by the radioactive stent from passing out of the crimping apparatus. An operating mechanism is operatively coupled to the first and second jaw members for selective movement between a loading condition and a crimping condition. In the loading condition, the uncrimped stent and the deployment device may be inserted through the opening and into the bore. In the crimping condition, the deformable stent is radially compressed onto the deployment device between the first and second compression surfaces.
摘要:
A flexible structural apparatus which may be used as a wound covering which extends above the wound such that the wound covering does not contact the wound and also protects the wound from contact. The apparatus provides a high degree of flexibility while retaining structural strength and resisting collapse, for example, so as to adequately protect the wound. Various embodiments include parallel beams and connections between beams that alternate in location along the beams to provide flexibility. Some embodiments may be used as springs and may have attachment features, such as holes, which may be located at the end beams, for example.
摘要:
A flexible structural apparatus which may be used as a wound covering which extends above the wound such that the wound covering does not contact the wound and also protects the wound from contact. The apparatus provides a high degree of flexibility while retaining structural strength and resisting collapse, for example, so as to adequately protect the wound. Various embodiments include parallel beams and connections between beams that alternate in location along the beams to provide flexibility. Some embodiments may be used as springs and may have attachment features, such as holes, which may be located at the end beams, for example.
摘要:
Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
摘要:
Medical devices and methods for making and using the same. An example medical device may include a tubular member and a liner disposed within the tubular member. The tubular member may have a plurality of slots formed therein. A space may be defined between the tubular member and the liner. One or more bonding members may be disposed in the space.
摘要:
A method for increasing the rate of thrombus formation and/or proliferative cell growth of a selected region (21) of cellular tissue (22) including the step of endovascularly irradiating the selected region (21) with radiation, having a dose range of endovascular radiation of about 1 Gy to about 600 Gy at a low dose rate of about 1 cGy/hr to about 320 cGy/hr, to increase thrombus formation and/or cell proliferation of the affected selected region (21). Preferably, the delivery means includes a deformable endovascular prosthesis (25) adapted for secured positioning adjacent to the selected region (21) of cellular tissue (22), and a radioactive source. This source cooperates with the deformable endovascular device (25) in a manner endovascularly irradiating the selected region with radiation, having the above-indicated dose range and low dose rate of endovascular radiation to increase thrombus formation and/or cell proliferation of the affected selected region (21).
摘要:
The drug loaded stent includes an expandable stent structural member, and a planar sheet of polymeric material attached to the outside of the expandable stent structural member. The polymeric material is preferably bioabsorbable, and loaded or coated with a therapeutic agent or drug to reduce or prevent restenosis in the vessel being treated. The polymer material can be attached to the metal stent at one or more points, and wrapped in a coil around the stent in an unexpanded state, to uncoil and expand in diameter to substantially match the expanded diameter of the metal stent; or can be wrapped tightly around the stent structural member and attached to itself, to stretch radially when the stent structural member is expanded. In another currently preferred embodiment, a combination of a stent structural member and a polymeric film wrapping can be provided with a coating of lubricious material. The lubricious material can be polyethylene oxide, polyethylene glycol, polyethylene acetate, polyvinyl pyrrolidone, polyvinyl alcohol, polyacrylamide, hydrophilic soft segment urethanes, some natural gums, polyanhydrides or other similar hydrophilic polymers, and combinations thereof. The layer of lubricious material protects the stent from the guide or the body lumen in which the stent is inserted by providing a low friction surface over the stents.
摘要:
Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.