摘要:
A method for forming a hydrolytically-stable hydrophilic coating on a fuel cell flow field plate comprises contacting a flow field plate with a titanium oxide sol to form a titanium oxide layer disposed upon the flow field plate. The coated flow field plate is subsequently contacted with a silicon oxide sol to form a silicon oxide/titanium oxide bilayer disposed upon the flow field plate. A flow field plate formed by the method is also provided.
摘要:
A hydrophobic composite bipolar plate for a fuel cell including a substrate having a composite material including carbon and a surface layer on the substrate. The surface layer includes silicon and oxygen, and a hydrocarbon moiety attached to at least one of the silicon or oxygen.
摘要:
In at least one embodiment, the present invention provides a hydrophilic electrically conductive fluid distribution plate and a method of making, and system for using, the hydrophilic electrically conductive fluid distribution plate. In at least one embodiment, the plate comprises a plate body defining a set of fluid flow channels configured to distribute flow of a fluid across at least one side of the plate, and a composite conductive coating having a water contact angle of less than 40° adhered to the plate body. In at least one embodiment, the composite coating comprises a polymeric conductive layer adhered to the plate body having an exterior surface, and a particulate carbon layer adhered to the exterior surface of the polymeric conductive layer.
摘要:
A hydrophobic composite bipolar plate for a fuel cell including a substrate having a composite material including carbon and a surface layer on the substrate. The surface layer includes silicon and oxygen, and a hydrocarbon moiety attached to at least one of the silicon or oxygen.
摘要:
An enhanced stability and inexpensive bipolar plate for a fuel cell is disclosed. The enhanced stability bipolar plate includes a bipolar plate substrate and a corrosion-resistant coating provided on the bipolar plate substrate. A method for enhancing corrosion resistance of a bipolar plate is also disclosed.
摘要:
A method for recovering ruthenium oxide or gold and titanium or titanium oxide from a bipolar plate at the end of the life of a fuel cell stack so as to use these materials in other fuel cell stacks thereafter. The bipolar plate is immersed in a solution including a suitable acid that dissolves the titanium or titanium oxide. The ruthenium oxide or gold will be released from the plate and will float on the solution from which it can be removed. The solution is then heated to evaporate the acid solution leaving a powder of the titanium oxide. The stainless steel of the bipolar plate is thus cleaned of the titanium or titanium oxide, and can be reused.
摘要:
A stainless steel flow field plate for a fuel cell that includes a layer of titanium or titanium oxide and a layer of titanium oxide/ruthenium oxide that makes the plate conductive and hydrophilic. In one embodiment, titanium is deposited on the surface of a stainless steel bipolar plate as a metal or an oxide using a suitable process, such as PVD or CVD. A solution of ruthenium chloride in ethanol is brushed on the titanium layer. The plate is then calcinated to provide a dimensionally stable titanium oxide/ruthenium oxide layer on the stainless steel that is hydrophilic and electrically conductive in the fuel cell environment.
摘要:
A sealed assembly is made using sealant including a deformable spacer to control thickness without adversely impacting elasticity and sealing force. Deformable spacers (e.g., elastomer, polyolefin, etc.) are mixed with an elastomeric precursor material and dispensed onto an assembly component, such as a fuel cell bipolar plate, and the remaining component(s) are assembled by pressing against the deformable spacer to ensure a defined seal thickness. The precursor is cured to form a seal that is further compressed to provide an effective sealing force. The deformable spacers control the thickness of a sealed area and allow use of form-in-place sealing processes.
摘要:
A method for recovering ruthenium oxide or gold and titanium or titanium oxide from a bipolar plate at the end of the life of a fuel cell stack so as to use these materials in other fuel cell stacks thereafter. The bipolar plate is immersed in a solution including a suitable acid that dissolves the titanium or titanium oxide. The ruthenium oxide or gold will be released from the plate and will float on the solution from which it can be removed. The solution is then heated to evaporate the acid solution leaving a powder of the titanium oxide. The stainless steel of the bipolar plate is thus cleaned of the titanium or titanium oxide, and can be reused.
摘要:
An electrode plate is disclosed. The electrode plate includes a plate having an active area, a feed region in fluid communication with the active region, and a tunnel region in fluid communication with the feed region and a manifold region, an ultralyophobic coating on one or more of at least a portion of the tunnel region, at least a portion of the feed region, and an interface between the tunnel region and the manifold region. Fuel cells using the electrode plate and methods of making electrode plates are also described.