Abstract:
An armor system matrix is provided, having a multiple layer system of very hard geometric objects tensionally restrained in their layers by fiber material interwoven about the objects with the objects and fiber material being bonded together by an adhesive material. The objects are substantially spherical ceramic material which may be of different dimensions, each ceramic sphere being substantially in contact with adjacent spheres on the same and adjacent parallel layers. Larger ceramic spheres may be located in the layers closer to the exposed surface of the armor system. The tensional relationship of the ceramic objects in each layer effectively distributes the impact of projectiles over a greater surface area.
Abstract:
Various embodiments provide a self-sealing system comprising a visco-elastic sealant material, an enclosed multi-cell structure surrounding the visco-elastic sealant material, and an integral pressure reservoir configured to maintain positive pressure within the enclosed multi-cell structure and provide potential energy to move the visco-elastic sealant material. In one embodiment, the enclosed multi-cell structure can have first and second skins, and an outer edge configured to contain visco-elastic sealant material between first and second skins. In one embodiment, the enclosed multi-cell structure can also have a plurality of nodes configured to connect first 100 and second skins. In one embodiment, at least one of the nodes has elasticity and can function as a tension spring. In one embodiment, at least one of nodes is loaded with releasable tension to provide a portion of the potential energy to move the visco-elastic sealant material.
Abstract:
A method of forming an Ilizarov ring includes forming two half rings, each of which comprises a length of resin impregnated cloth. Cloth is pre-impregnated with a resin and then wound to provide a plurality of layers in a three dimensional orientation, and then the resin impregnated cloth is placed in a mold. After the resin impregnated cloth is pressed and cured in the mold, the material is removed from the mold and is appropriately machined. Two half rings are secured together to form a single ring.
Abstract:
An exemplary apparatus providing a substantially optically transparent/translucent composite armor material is disclosed as having: a first layer of hard transparent material (i.e., a glass facing layer) adapted for attachment to a second layer of polymer backing (i.e., a kinetic layer) and a layer of elastomeric bonding material disposed between the first and second layers. Disclosed features and specifications may be variously controlled, adapted or otherwise optionally modified to improve and/or modify the performance characteristics of the transparent/translucent armor composite. Exemplary embodiments of the present invention generally provide lightweight transparent/translucent armor for use as, for example, bulletproof windows in vehicles and buildings.
Abstract:
A direct current electric arc furnace for melting or heating raw material or molten material. The furnace includes a refractory lined vessel for holding raw or molten material in its interior. The furnace includes at least a first top electrode. The first top electrode enters the vessel interior above the raw or molten material. The furnace includes at least a first bottom electrode mounted in the bottom of the vessel and in electrical contact with the raw or molten material in the vessel. The furnace also includes an electrical power supply mechanism which electrically connects to the top electrode and the bottom electrode in order to input electrical energy into the material through the top and bottom electrodes in the form of an arc. The bottom electrode has an opposite electrical polarity to the electrical polarity of the top electrode. The furnace includes a mechanism for stirring the molten material in the vessel and guiding the arc in the vessel. The stirring and guiding mechanism is in communication with the interior of the vessel. A method for operating a direct current arc furnace.
Abstract:
In accordance with an exemplary embodiment of the present invention, an optically clear polyurethane/polyurea polymer may comprises an impact resistant material comprising: a first polycarbonate layer; a second layer comprising a first elastomer; a third glass layer; a fourth layer comprising a second elastomer; and a fifth polymeric layer. In another exemplary embodiment, the third glass layer may be articulated and/or embedded in the second layer. Disclosed features and specifications may be variously controlled, adapted or otherwise optionally modified to improve and/or modify the performance characteristics of the transparent armor composite. Exemplary embodiments of the present invention generally provide lightweight transparent armor for use as, for example, bulletproof windows in vehicles and buildings.
Abstract:
A direct current electric arc furnace for melting or heating raw material or molten material. The furnace includes a refractory lined vessel for holding raw or molten material. The vessel has at least an old furnace shell having a bottom electrode which is replaceable with a new furnace shell having a bottom electrode such that the new furnace shell is placed in an operating position and replaces the old furnace shell. The furnace includes at least a first top electrode. The furnace includes at least a first bottom electrode mounted in the bottom of the vessel and in electrical contact with the raw or molten material in the vessel. The furnace includes an electrical power supply mechanism which electrically connects to the top electrode and the bottom electrode in order to input electrical energy into the materials through the top and bottom electrode and the form of an arc. The bottom electrode has opposite electrical polarity to the electrical polarity of the top electrode. The furnace also includes a repair area to receive the old furnace shell. The repair area has a mechanism for separating the bottom electrode of the old furnace shell from the old furnace shell. The repair area is remote from the vessel. The furnace includes a mechanism for moving the old furnace shell between the vessel and the repair area. A method for operating a direct current arc furnace.
Abstract:
A method of forming an Ilizarov ring includes forming two half rings, each of which comprises a length of resin impregnated cloth. Cloth is pre-impregnated with a resin and then wound to provide a plurality of layers in a three dimensional orientation, and then the resin impregnated cloth is placed in a mold. After the resin impregnated cloth is pressed and cured in the mold, the material is removed from the mold and is appropriately machined. Two half rings are secured together to form a single ring.
Abstract:
A disposable mouth to mouth resuscitation device includes a one way valve for preventing the victim's breath, saliva, mucus or disease agents from contact with the resuscitator's mouth or respiratory tract. The one way valve is in a plastic body from which extends a curved airway tube for placing in the victim's mouth. At the other end of the plastic body is a flexible tube leading to a mouth piece at its opposing end, for insertion into the mouth of the resuscitator. A mouth and nose mask is connected to the plastic body, adjacent to the curved airway tube, for sealing over the nose and mouth of the victim during resuscitation. When the victim exhales, his breath and other exhaled materials are exhausted through a side port in the plastic body and into the atmosphere. The flexible tube, the mouth and nose seal and the location of the exhaust port allow the resuscitator to have one hand free to perform, when necessary, cardio-pulmonary resuscitation, monitoring of vital signs, or steps for stemming the flow of blood.