摘要:
A method for enhancing pace pulses is presented. The method includes providing a set of digital electrocardiogram data comprising a plurality of pulses, wherein each pulse is of a generally constant width. Furthermore, the method includes differentiating the plurality of pulses to generate a plurality of pairs of differentiated pulses, wherein each pair of differentiated pulses is separated by the generally constant width of the corresponding pulse. In addition, the method includes enhancing the plurality of pairs of differentiated pulses. Systems and computer-readable medium that afford functionality of the type defined by this method are also provided by the present technique.
摘要:
The present technique provides for the detection of pace pulses in electrocardiogram data. The technique provides for processing one or more sets of electrocardiogram data via a non-linear algorithm. Furthermore, the technique provides for detecting one or more pace pulses in the one or more sets of electrocardiogram data via a non-linear detection algorithm. Systems and computer programs that afford functionality of the type defined by this method are also provided by the present technique.
摘要:
A physiological parameter monitoring system and method is described. The system includes a plurality of sensors configured to obtain from a subject at least one observable voltage containing two or more signals. The system also includes a data manager and a data auxiliary device. The data manager is in communication with the plurality of sensors and is configured to assemble and format data obtained by the plurality of sensors. The data manager is configured to isolate one of the two or more signals. The method includes placing a plurality of sensors in communication with a subject, transmitting data from the plurality of sensors to a data manager, and isolating a desired voltage signal from the plurality of voltage signals.
摘要:
An analog-to-digital converter compensation method includes providing at least one analog tone, converting the analog tone into digital signals, and using the digital signals to generate an error compensation model comprising a plurality of compensation values corresponding to respective digital signals. The compensation values are obtained by applying a time domain window, performing a discrete Fourier transform on digital signals within the time domain window, zeroing out transform bins except for bins within lobes on selected spurious frequencies, performing an inverse Fourier transform, and obtaining resulting signals from applying an inverse of the time domain window.
摘要:
A method for detecting and modifying breath pauses in a speech input signal includes detecting breath pauses in a speech input signal; modifying the breath pauses by replacing the breath pauses with a predetermined input and/or attenuating the breath pauses; and outputting an output speech signal. A computer program for carrying out the method is also presented.
摘要:
A method for transcoding a bit stream encoded according to a linear predictive coding (LPC) standard to a bit stream encoded according to a mixed-excitation linear prediction (MELP) standard, including: decoding a bit stream into a first set of vocoder parameters compatible with the LPC standard; transforming the first set of vocoder parameters into a second set of vocoder parameters compatible with the MELP standard without converting the first set of vocoder parameters to an analog or digital waveform representation; and encoding the second set of vocoder parameters into a bit stream compatible with the MELP vocoder standard.
摘要:
The system and method of the present invention comprises a compressed domain conference bridge. The method includes maintaining full intelligibility for all users even when there are multiple simultaneous talkers. The bridge also allows a user to hear a plurality of talkers over a single channel.
摘要:
A method for transcoding a bit stream encoded according to a mixed-excitation linear prediction (MELP) standard to a bit stream encoded according to a linear predictive coding (LPC) standard, including: decoding a bit stream into a first set of vocoder parameters compatible with the MELP standard; transforming the first set of vocoder parameters into a second set of vocoder parameters compatible with the LPC standard without converting the first set of vocoder parameters to an analog or digital waveform representation; and encoding the second set of vocoder parameters into a bit stream compatible with the LPC vocoder standard.
摘要:
A system for training a linearization compensation model includes a tone generator for providing at least two different RF tones, receiver path components for processing the RF tones, an analog-to-digital converter for converting the processed RF tones into digital signals, and a processor for using the digital signals to generate the linearization error compensation model. The resulting compensation model is particularly useful in a linearization system which includes a receiver for measuring a signal, an electro-optical modulator configured for converting the measured signal to an optical signal, an optical-electrical detector configured for converting the optical signal to an analog electrical signal, an analog-to-digital converter for converting the analog electrical signal into a digital signal with the processor being used for removing linearization errors from the digital signal.
摘要:
A software defined radio detects an amplitude modulated (AM) signal contained within a received signal. This detection involves first receiving a radio frequency (RF) signal that contains the AM signal modulated about a carrier frequency (fc). The RF signal is downconverted using a first local oscillator having a frequency flo. An in-phase (I) channel signal and a quadrature (Q) channel signal are produced. From the I-channel signal, a relationship between the carrier frequency and the frequency of the local oscillator is determined with a frequency detector. The downconverted carrier signal of the I-channel signal is used to create a second set of signals with proper phases and frequencies that can be used to rotate the I-channel and Q-channel signals to account for differences between the downconverted fc and DC. From the I-channel and Q-channel signals, a phase difference between the I-channel and Q-channel signals is determined so that the processed I-channel and Q-channel signals can be properly combined. Properly combining the processed (rotated) I-channel and Q-channel signals results in a demodulated AM signal.