Abstract:
A fast start-up circuit and a method of a flyback power supply utilize a charging current that is related to an input voltage of the flyback power supply to charge a control terminal of a power switch of the flyback power supply during a start-up mode. Accordingly, the power switch can be switched, and a supply voltage of the flyback power supply rises. When an output terminal of the flyback power supply occurs a short circuit, the fast start-up circuit and the method of the present invention will decrease a maximum of a current through the power switch, thereby avoiding that the power switch is overheating.
Abstract:
A light emitting system includes a series connection of a light emitting unit and a variable current source, and a voltage conversion device that includes a rectifier circuit and an output circuit. The rectifier circuit rectifies an AC voltage to generate a rectified voltage across a first rectifier output coupled to one end of the series connection of the light emitting unit and the variable current source, and a second rectifier output. The output circuit is coupled between the second rectifier output and another end of the series connection of the light emitting unit and the variable current source, and is configured to generate a direct-current (DC) output voltage.