摘要:
A sealed proton-exchange membrane fuel cell unit of this invention comprises an MEA component, a sealing unit, and current collectors for the positive and negative electrodes. The current collectors press the MEA components from each side. The MEA components comprise a proton-exchange membrane, a sealing unit, and the positive and negative electrodes attached to each side of the membrane. A sealing unit cover the edges of the proton-exchange membrane. First positioning units are located on each side of said sealing unit facing the respective current collectors of the negative and positive electrodes. At the corresponding locations on the current collectors of the negative and positive electrodes there are second positioning units. The first and second positioning units correspondingly match each other. First positioning units can be convex in shape on the surface of the sealing units. The second positioning units can be sealing grooves formed by cutting on the surface of the current collectors facing the MEA component. By matching the locations of the first and second positioning units, the negative and positive current collectors are not likely to slide against each other. Thus the cell is more tightly sealed, achieving better air-tightness.
摘要:
The invention provides a method for preparing a membrane electrode of a fuel cell, comprising the steps of preparing diffusion layers, and superimposing the diffusion layers on a proton exchange membrane having a catalyst layer on each surface, wherein the method for preparing the proton exchange membrane having a catalyst layer on each surface comprises the steps of: filling a catalyst slurry containing a catalyst and a bonding agent between two polymer films, and pressing the polymer films filled with the catalyst slurry to obtain a catalyst layer; and superimposing the catalyst layer on each surface of a proton exchange membrane. The method of the present invention can control the thickness of the catalyst layers by pressing during preparation thereof, therefore, the catalyst layers have an even thickness and surface.
摘要:
The invention provides a method for preparing a membrane electrode of a fuel cell, comprising the steps of preparing diffusion layers, and superimposing the diffusion layers on a proton exchange membrane having a catalyst layer on each surface, wherein the method for preparing the proton exchange membrane having a catalyst layer on each surface comprises the steps of: filling a catalyst slurry containing a catalyst and a bonding agent between two polymer films, and pressing the polymer films filled with the catalyst slurry to obtain a catalyst layer; and superimposing the catalyst layer on each surface of a proton exchange membrane. The method of the present invention can control the thickness of the catalyst layers by pressing during preparation thereof, therefore, the catalyst layers have an even thickness and surface.
摘要:
This invention discloses fabrication methods for membrane electrode assemblies of proton exchange membrane fuel cells, including gas diffusion electrodes. The fabrication methods of gas diffusion electrodes include the following steps: fabricating a conductive substrate; forming a layer of carbon containing material onto said conductive substrate; subjecting said conductive substrate with said carbon containing material to pressure at a predetermined temperature; cooling said conductive substrate with said material having carbon under pressure to obtain a gas diffusion layer on said conductive substrate; coating a layer of catalyst containing material onto said gas diffusion layer; subjecting said layer of catalyst containing material with gas diffusion layer and conductive substrate to pressure at another predetermined temperature; cooling under pressure to form a gas diffusion electrode. Compared with the existing technologies, all layers within the membrane electrode assemblies are bonded together tightly and will not separate easily. In addition, during fabrication, the gas diffusion electrodes are not easily distorted. These fabrication methods are simple, easy to implement, have good reproducibility and produces electron membrane with excellent synthetic electrical properties.