摘要:
An EMI filter capacitor assembly utilizes biocompatible and non-migratable materials to adapt electronic components for direct body fluid exposure. The assembly includes a capacitor having first and second sets of electrode plates which are constructed of non-migratable biocompatible material. A conductive hermetic terminal of non-migratable and biocompatible material adjacent to the capacitor is conductively coupled to the second set of electrode plates. One or more conductive terminal pins having at least an outer surface of non-migratable and biocompatible material are conductively coupled to the first set of electrode plates, while extending through the hermetic terminal in non-conductive relation. The terminal pins may be in direct contact with the first set of electrode plates, or in contact with a termination surface of conductive connection material. The termination surface is also constructed of non-migratable and biocompatible materials. Layers of glass may be disposed over surfaces of the assembly, including the capacitor.
摘要:
An EMI filter capacitor assembly utilizes biocompatible and non-migratable materials to adapt electronic components for direct body fluid exposure. The assembly includes a capacitor having first and second sets of electrode plates which are constructed of non-migratable biocompatible material. A conductive hermetic terminal of non-migratable and biocompatible material adjacent to the capacitor is conductively coupled to the second set of electrode plates. One or more conductive terminal pins having at least an outer surface of non-migratable and biocompatible material are conductively coupled to the first set of electrode plates, while extending through the hermetic terminal in non-conductive relation. The terminal pins may be in direct contact with the first set of electrode plates, or in contact with a termination surface of conductive connection material. The termination surface is also constructed of non-migratable and biocompatible materials. Layers of glass may be disposed over surfaces of the assembly, including the capacitor.
摘要:
A TANK filter is provided for a lead wire of an active medical device (AMD). The TANK filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the lead wire of the AMD, wherein values of capacitance and inductance are selected such that the TANK filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the TANK filter to attenuate current flow through the lead wire along a range of selected frequencies. In a preferred form, the TANK filter is integrated into a TIP and/or RING electrode for an active implantable medical device.
摘要:
A TANK filter is provided for a lead wire of an active medical device (AMD). The TANK filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the lead wire of the AMD, wherein values of capacitance and inductance are selected such that the TANK filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the TANK filter to attenuate current flow through the lead wire along a range of selected frequencies. In a preferred form, the TANK filter is integrated into a TIP and/or RING electrode for an active implantable medical device.
摘要:
A TANK filter is provided for a lead wire of an active medical device (AMD). The TANK filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the lead wire of the AMD, wherein values of capacitance and inductance are selected such that the TANK filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the TANK filter to attenuate current flow through the lead wire along a range of selected frequencies. In a preferred form, the TANK filter is integrated into a TIP and/or RING electrode for an active implantable medical device.
摘要:
A TANK filter is provided for a lead wire of an active medical device (AMD). The TANK filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the lead wire of the AMD, wherein values of capacitance and inductance are selected such that the TANK filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the TANK filter to attenuate current flow through the lead wire along a range of selected frequencies. In a preferred form, the TANK filter is integrated into a TIP and/or RING electrode for an active implantable medical device.
摘要:
An electro-magnetic interference filter terminal assembly for active implantable medical devices includes a structural pad in the form of a substrate or attached wire bond pad, for convenient attachment of wires from the circuitry inside the implantable medical device to the capacitor structure via thermal or ultrasonic bonding, soldering or the like while shielding the capacitor from forces applied to the assembly during attachment of the wires.
摘要:
An electro-magnetic interference filter terminal assembly for active implantable medical devices includes a structural pad in the form of a substrate or attached wire bond pad, for convenient attachment of wires from the circuitry inside the implantable medical device to the capacitor structure via thermal or ultrasonic bonding, soldering or the like while shielding the capacitor from forces applied to the assembly during attachment of the wires.
摘要:
A terminal assembly for active implantable medical devices includes a structural pad, in the form of a substrate or attached wire bond pad, for convenient attachment of wires from the circuitry inside the implantable medical device.
摘要:
A feedthrough terminal assembly for an active implantable medical device utilizes to establish a reliable electrical connection between capacitor electrode plates, via inner surface metallization of a capacitor aperture, and an associated terminal pin 10, which passes at least partially therethrough. The inserts are preferably resiliently flexible, such as a spring, to establish this connection. The insert also serves to establish a mechanical connection between the capacitor and the terminal pin.