Abstract:
A multilayer ceramic capacitor includes a multilayer body including dielectric layers and internal electrode layers alternately laminated, and external electrodes each on a corresponding one of end surfaces in a length direction perpendicular or substantially perpendicular to a lamination direction of the multilayer body, and each connected to the internal electrode layers. A surface, in a plan view in the length direction, of each of the external electrodes is covered with an insulating layer except for a frame region having a width of about 1 μm or more and about 100 μm or less from an outer peripheral edge of the surface.
Abstract:
A multilayer electronic component according to an example embodiment of the present disclosure may include a body including a dielectric layer and internal electrodes alternately arranged in a first direction with the dielectric layer between the internal electrodes, and including first and second surfaces opposing each other in the first direction, third and fourth surfaces connected to the first and second surfaces and opposing each other in a second direction, and fifth and sixth surfaces connected to the first to fourth surfaces and opposing each other in a third direction; external electrodes disposed on the body; and a first inorganic material, including at least one inorganic material among sulfur (S) and fluorine (F), disposed in at least a portion between the body and the external electrodes.
Abstract:
A multi-terminal capacitor is provided that can be used either as a feedthrough capacitor or as a LW reversal capacitor. A multi-terminal capacitor includes a capacitor body shaped like a rectangular parallelepiped. The capacitor body includes a capacitance forming portion configured to form capacitance between a first conductor film and a second conductor film facing each other with a dielectric film being interposed therebetween. On one of the surfaces of the capacitor body in the third direction, first and second external terminals electrically connected to the first conductor film, and a third external terminal electrically connected to the second conductor film are provided. On the other of the surfaces of the capacitor body in the third direction, fourth and fifth external terminals electrically connected to the first conductor film and a sixth external terminal electrically connected to the second conductor film are provided.
Abstract:
An electronic component includes an electronic component element and a barrier film. The electronic component element has external electrodes at both ends thereof. The barrier film covers at least a part of a periphery of the electronic component element. The barrier film includes an insulating film having electrical insulating property and a clay layer containing clay.
Abstract:
A chip electronic component includes spacers that each have a predetermined thickness direction dimension on a mounting surface in a direction perpendicular to the mounting surface. The spacers each contain, as a main component, an intermetallic compound containing at least one high-melting-point metal selected from Cu and Ni, and Sn defining a low-melting-point metal.
Abstract:
A multilayer ceramic capacitor includes a body a first internal electrode and a second internal electrode disposed with a dielectric layer interposed therebetween, a first connecting electrode connected to the first internal electrode through the body, a second connecting electrode connected to the second internal electrode through the body, a first external electrode disposed on one surface of the body and connected to the first connecting electrode, and a second external electrode disposed on one surface of the body, spaced apart from the first external electrode, and connected to the second connecting electrode, wherein the first and second external electrodes each include a first electrode layer disposed on the body and including ceramics, and a second electrode layer disposed on the first electrode layer and having the content of ceramics smaller than that of the first electrode layer.
Abstract:
A high capacitance single layer ceramic capacitor structure having a ceramic dielectric body containing one or more internal electrodes electrically connected to a metallization layer applied to the side and bottom surfaces and a metallization pad electrically isolated from the metallization side and bottom surfaces positioned on a top surface of the ceramic body.
Abstract:
An electronic component including an electronic component element with an external electrode, a Ni plating film on the external electrode, and a Sn plating film covering the Ni plating film. The Sn plating film has Sn—Ni alloy flakes therein, the Sn—Ni alloy flakes are present in the range from a surface of the Sn plating film on the Ni plating film to 50% or less of the thickness of the Sn plating film, and when Sn is removed from the Sn plating film to leave only the Sn—Ni alloy flakes, an observed planar view of a region occupied by the Sn—Ni alloy flakes falls within the range from 15% to 60% of the observed planar region.
Abstract:
In a ceramic electronic component, an electrically conductive resin layer is arranged to cover a thick film layer and to extend beyond the end of the thick film layer by at least about 100 μm and a plating layer is arranged to cover the electrically conductive resin layer except a region having a dimension of at least about 50 μm and extending along the end of the electrically conductive resin layer. Consequently, the concentration of the stress is reduced.
Abstract:
A metallized-film capacitor includes a slit (5a) at approx. center of the width (W) of an effective electrode which actually forms a capacitance of a pair of deposited electrodes (110, 210). Divisional electrodes (2a, 2b) exist at a place between the center and insulation margins (4a, 4b), and the electrodes (2a, 2b) are coupled in parallel to each other by fuses (7a, 7b) disposed away from metallized contacts (6a, 6b). Such a structure as placing fuses (7a, 7b) away from the contacts (6a, 6b) allows reducing a current supplied from the contacts (6a, 6b) and running through fuses (7a, 7b), thereby lowering heat generated from fuses (7a, 7b). As a result, a temperature rise in the metallized-film capacitor can be suppressed.