摘要:
Liquid gauging system for liquid in a container includes a plurality of sensors; each of the sensors measuring a respective parameter of the liquid in the container and producing a sensor output related to its measured parameter; there being at least two sensors that measure different parameters of the liquid; and a processor that receives the sensor outputs and determines, based on the sensor outputs, a quantity of the liquid in the container; the processor determining the quantity by executing at least one sensor fusion algorithm that is based on a set of relationships between the measured parameters and the quantity. The gauging system can also include a data fusion process for determining quantity based on a plurality of quantity measurements.
摘要:
A method for determining an optimized solution of positions for N liquid surface sensors used to gauge quantity of liquid in the container, comprising the steps of:a) defining geometric limits of the container in terms of coordinates of a three axis (x,y,z) reference coordinate system assigned to the container;b) defining a chromosome structure for an individual, wherein said chromosome structure identifies a solution in terms of position data of the N sensors;c) determining a population of individuals wherein each individual in said population is a possible solution within said geometric limits; each individual having a respective chromosome; andd) executing a genetic algorithm on said population to identify a solution that meets a performance criteria as measured by a predetermined cost function.
摘要:
Alternative direct sequence spread spectrum symbol to chip mappings and methods for generating the same for use in a direct sequence spread spectrum wireless protocol and embedded in a transceiver chip used by wireless subsystems are provided. The present invention discloses alternative symbol to chip mappings that are orthogonal or nearly orthogonal to the N/2 unused chip sequences defined by a standard transmission protocol. The present invention is advantageous because it provides for an increased number of users and better reliability for wireless subsystems operating in increasingly overcrowded frequency bands. Other advantages of the present invention include a reduction in the negative effects of clear channel assessment including delayed or cancelled signal transmission and interference for wireless subsystems that transmit time-sensitive data.
摘要:
Wireless communication may be provided between an access point and one or more wireless devices, such as wireless sensors used in avionics applications for sensing, monitoring and control systems. Synchronization of wireless devices may be required so that certain actions, such as data acquisition, are performed at precisely controlled time instances. The system described herein provides for rapid synchronization of wireless devices that does not require the use of prior timing data and that may be performed without communication directly between the wireless devices. Further, techniques are provided for addressing packet losses and packet propagation delays.
摘要:
Synchronizing a wireless sensor includes receiving a first command at the wireless sensor, noting a first timestamp value indicating when the first reply is sent, responding to the first command with a first reply, receiving a second command at the wireless sensor that contains a second timestamp value indicating when the first reply was received and a third timestamp value indicating when the second command was sent to the wireless sensor, noting a fourth timestamp value indicating when the second command was received by the wireless sensor, and determining an offset at the wireless sensor using the first, second, third, and fourth timestamp values. The presence of the first timestamp value may be interpreted as a request to provide timestamp information for synchronization. An access point may communicate with the wireless sensor.
摘要:
Detecting video phenomena, such as fire in an aircraft cargo bay, includes receiving a plurality of video images from a plurality of sources, compensating the images to provide enhanced images, extracting features from the enhanced images, and combining the features from the plurality of sources to detect the video phenomena. Extracting features may include determining an energy indicator for each of a subset of the plurality of frames. Detecting video phenomena may also include comparing energy indicators for each of the subset of the plurality of frames to a reference frame. The reference frame corresponds to a video frame taken when no fire is present, video frame immediately preceding each of the subset of the plurality of frames, or a video frame immediately preceding a frame that is immediately preceding each of the subset of the plurality of frames. Image-based and non-image based techniques are described herein in connection with fire detection and/or verification and other applications.
摘要:
Detecting video phenomena, such as fire in an aircraft cargo bay, includes receiving a plurality of video images from a plurality of sources, compensating the images to provide enhanced images, extracting features from the enhanced images, and combining the features from the plurality of sources to detect the video phenomena. Extracting features may include determining an energy indicator for each of a subset of the plurality of frames. Detecting video phenomena may also include comparing energy indicators for each of the subset of the plurality of frames to a reference frame. The reference frame corresponds to a video frame taken when no fire is present, video frame immediately preceding each of the subset of the plurality of frames, or a video frame immediately preceding a frame that is immediately preceding each of the subset of the plurality of frames. Image-based and non-image based techniques are described herein in connection with fire detection and/or verification and other applications.
摘要:
Detecting a fire, such as a fire in an aircraft cargo bay, includes receiving a plurality of frames of video information, determining an energy indicator for each of a subset of the plurality of frames, and detecting the presence of fire in response to the energy indicator for each of the subset of the plurality of frames corresponding to a predetermined pattern as a function of time. Detecting a fire may also include comparing energy indicators for each of the subset of the plurality of frames to a reference frame. The reference frame may correspond to a video frame taken when no fire is present or a video frame immediately preceding each of the subset of the plurality of frames. At least some of the subset of the plurality of frames may be provided by a camera having a sensitivity of between 400 nm and 1000 nm that may generates 640×480 pixels per frame. At least some of the subset of the plurality of frames may be provided by a CCD camera or a CMOS camera. At least some of the subset of the plurality of frames may be provided by a camera having a sensitivity of between 7 and 14 micrometers, which may be an IR camera.
摘要:
Synchronizing a wireless sensor includes receiving a first command at the wireless sensor, noting a first timestamp value indicating when the first reply is sent, responding to the first command with a first reply, receiving a second command at the wireless sensor that contains a second timestamp value indicating when the first reply was received and a third timestamp value indicating when the second command was sent to the wireless sensor, noting a fourth timestamp value indicating when the second command was received by the wireless sensor, and determining an offset at the wireless sensor using the first, second, third, and fourth timestamp values. The presence of the first timestamp value may be interpreted as a request to provide timestamp information for synchronization. An access point may communicate with the wireless sensor.
摘要:
Interpolation techniques are described for use with data that may not be uniform and may be characterized as scattered. Such data may be obtained in instances where data acquisition may not be easily controlled such as in obtaining experimental data for use with models. Data interpolation techniques may be used in connection with the experimental data to produce a more complete and accurate data set representative of a variety of conditions using as input the non-uniform or scattered data. Such data sets may be used in a variety of applications including providing a realistic and complete set of data for training and verifying neural networks.