摘要:
An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.
摘要:
Oxygenated acetyl compounds ethylidene diacetate, acetic acid, acetic anhydride, acetaldehyde, and methyl acetate are produced directly from synthesis gas and dimethyl ether in a catalyzed liquid phase reaction system. The inclusion of carbon dioxide in the synthesis gas in selected amounts increases the overall yield of oxygenated acetyl compounds from the reactant dimethyl ether. When methanol is included in the reactor feed, the addition of carbon dioxide significantly improves the molar selectivity to ethylidene diacetate.
摘要:
Methanol is produced by reacting a CO-rich synthesis gas in the presence of a powdered methanol synthesis catalyst suspended in an inert liquid in a liquid phase reactor system. Unreacted CO-rich synthesis gas is recycled to the reactor, thus increasing methanol production and reducing specific power compared with once-through operation without recycle or compared with recycle of hydrogen-rich gas recovered from unreacted synthesis gas. The process preferably is integrated with a coal gasification electric power generation system in which a portion of the unreacted synthesis gas is used as power generation fuel and a portion of the methanol product is used as additional power generation fuel during periods of peak power demand.
摘要:
Methanol is produced from synthesis gas comprising hydrogen, carbon monoxide, and carbon dioxide in a two-stage liquid phase reactor system. Each reactor is operated in an optimum temperature range to maximize methanol productivity, and once-through product conversion of up to 9.1 moles methanol per 100 moles of synthesis gas can be achieved with reasonable catalyst utilization. Overall catalyst utilization is increased by countercurrent catalyst transfer. In an alternate mode of operation, the liquid phase reactor system is integrated with a coal gasification combined cycle (CGCC) power generation process wherein the unreacted synthesis gas is used as fuel in a gas turbine-driven electric power generator. Operation of each liquid phase reactor in the optimum temperature range maximizes the available heat of reaction which is recovered as steam; the steam is utilized in the gas turbine combustor or the CGCC steam turbine. Methanol from the liquid phase reactor system can be used as peak shaving fuel for the gas turbine.
摘要:
A circulating fluidized bed combustion reactor and a process for combusting a solid hydrocarbon fuel in the same wherein fly ash recycling is utilized to regulate heat transfer and to minimize erosion of reactor operating components. The process comprises introducing a solid hydrocarbon fuel and an oxygen-containing gas into a combustion zone which is surrounded by a plurality of adjoining cooling tubes containing a circulating fluid; combusting the fuel in the presence of the oxygen-containing gas within a predetermined temperature range thereby forming hot exhaust gases containing solid particles; discharging the hot exhaust gases containing the solid particles from the combustion zone and cooling the exhaust gases by indirect heat exchange against the cooling tubes; separating the resultant cooled solid particles into at least a first portion which is recycled into the combustion zone and a second portion having an average particle size smaller than the first portion; separating the second portion into a gas stream substantially free of particles and a concentrated stream of particles; recycling the concentrated stream of particles into the combustion zone at a rate sufficient to maintain the predetermined temperature range within the combustion zone and exhausting the gas stream which is substantially free of solid particles.
摘要:
The present invention is directed to a process for the purification and liquefaction of helium from a feed stream consisting essentially of nitrogen and helium with some minor impurities, wherein the helium is purified in a two step process: the first purification step comprising refrigerating the feed stream to condense nitrogen and any impurities from the feed stream, feeding the cooled feed stream to a separator, and removing from the bottom of the separator the condensed nitrogen and impurities in the feed stream and from the top of the separator a gaseous, high-helium-content stream; the second purification step comprising warming the gaseous, high-helium-content stream from the first purification step, feeding said stream to a pressure swing adsorber, and removing from the pressure swing adsorber an essentially pure helium stream, which is liquefied by feeding said essentially pure helium stream to a liquefier; wherein refrigeration is provided for the warm end of the liquefier and the two step purification; the improvement comprising providing said refrigeration by compressing a side stream of the essentially pure helium in a compressor and expanding said compressed stream in an expansion engine thereby producing a cold helium gas stream; splitting said cold helium stream into two substreams and circulating said cold helium gas stream to the warm end of the liquefier and to the two step purification to provide refrigeration duty.