Method for producing a precursor material for an electrochemical cell

    公开(公告)号:US11901547B2

    公开(公告)日:2024-02-13

    申请号:US17311405

    申请日:2019-12-03

    CPC classification number: H01M4/1393 H01M4/622 H01M4/625

    Abstract: The present invention relates to a method for producing a precursor material (10) for an electrochemical cell. The method comprises the steps of adding a matrix material (18) to a fluidized bed (40), and adding a carrier medium (48) and a de-agglomerated carbon nanotube material (22) to the fluidized bed (40), so that the carbon nanotube material (22) and the carrier medium (48) is applied to the matrix material (18) and the latter is granulated therewith, wherein the carbon nanotube material (22) has been suspended and de-agglomerated prior to addition to the carrier medium (48), and/or the carbon nanotube material (22) present in de-agglomerated form in the fluidized bed (40) dissolving with the carrier medium (48) in the fluidized bed (40).

    METHOD FOR PRODUCING A PRECURSOR MATERIAL FOR AN ELECTROCHEMICAL CELL

    公开(公告)号:US20220123281A1

    公开(公告)日:2022-04-21

    申请号:US17311405

    申请日:2019-12-03

    Abstract: The present invention relates to a method for producing a precursor material (10) for an electrochemical cell. The method comprises the steps of adding a matrix material (18) to a fluidized bed (40), and adding a carrier medium (48) and a de-agglomerated carbon nanotube material (22) to the fluidized bed (40), so that the carbon nanotube material (22) and the carrier medium (48) is applied to the matrix material (18) and the latter is granulated therewith, wherein the carbon nanotube material (22) has been suspended and de-agglomerated prior to addition to the carrier medium (48), and/or the carbon nanotube material (22) present in de-agglomerated form in the fluidized bed (40) dissolving with the carrier medium (48) in the fluidized bed (40).

    METHOD FOR PRODUCING ELECTRODES HAVING AN IMPROVED CURRENT COLLECTOR STRUCTURE

    公开(公告)号:US20180076464A1

    公开(公告)日:2018-03-15

    申请号:US15702276

    申请日:2017-09-12

    Inventor: Harald Bauer

    Abstract: A method for producing an electrode having an electrically conductive current collector layer having a terminal region for connection to an electrical power circuit, in which to improve the electrical discharge via the terminal region, the current collector layer has at least one structural element having an electrical conductivity that is increased compared to the current collector layer, through which structural element the electrical resistance between a point on the current collector layer and the terminal region is reduced, the method including: providing at least one free-standing active material foil; providing an electrically conductive layer on at least one surface of the active material foil, the electrically conductive layer being formed immediately on the surface of the active material foil to form the current collector layer; and connecting an electrical terminal region to the electrically conductive layer to enable connection to an electrical power circuit.

    METHOD FOR PRODUCING A BIPOLAR PLATE FOR A FUEL CELL

    公开(公告)号:US20220271304A1

    公开(公告)日:2022-08-25

    申请号:US17628630

    申请日:2020-06-09

    Abstract: The invention relates to a method for producing a bipolar plate (10) for a fuel cell (1), comprising a plate body (11) for separating the fuel cell (1) from a neighbouring fuel cell (1) or a housing, wherein the plate body (11) has a flow field structure (1b) for introducing the reactants into the fuel cell (1). To that end, according to the invention, the method comprises the following steps: providing a mass (D1) made of electrically conductive particles and a polymer-based adhesive; applying the provided mass (D1) to the plate body (11) of the bipolar plate (10) in the form of the flow field structure (1b); pyrolising the applied mass (D1) which remains on the plate body (11) of the bipolar plate (10) as a shaping element in the form of the flow field structure (1b) and which is connected to said plate body.

    METHOD FOR PRODUCING A SEALED FUEL CELL
    9.
    发明公开

    公开(公告)号:US20230197982A1

    公开(公告)日:2023-06-22

    申请号:US17926163

    申请日:2021-05-10

    CPC classification number: H01M8/0286 H01M8/0284 H01M8/0276

    Abstract: The invention relates to a method for producing a sealed fuel cell (101) for a fuel cell stack (100), comprising a cathode-side distributor plate (K), an anode-side distributor plate (A) and a membrane electrode unit (MEA), said method comprising the following steps: 1) providing a cathode-side distributor plate (K) and an anode-side distributor plate (A), 2) providing a first film web (B1) for sealing the cathode-side distributor plate (K) and a second film web (B2) for sealing the anode-side distributor plate (A), 3) punching a cathode-side distributor structure (VK) for the cathode-side distributor plate (K) out of the first film web (B1) and an anode-side distributor structure (VA) for the anode-side distributor plate (A) out of the second film web (B2), 4) cutting the first film web (B1) to produce a first seal (D1) for the cathode-side distributor structure (VK) and cutting the second film web (B2) to produce a second seal (D2) for the anode-side distributor structure (VA), 5) placing the first seal (D1) on the cathode-side distributor plate (K) and the second seal (D2) on the anode-side distributor plate (A), 6) heating the cathode-side distributor plate (K) and the anode-side distributor plate (A) in order to connect together the first seal (D1) on the cathode-side distributor plate (K) and the second seal (D2) on the anode-side distributor plate (A) in an integrally joined manner, more particularly to melt said seals together.

    DISTRIBUTING STRUCTURE FOR A FUEL CELL WITH ANISOTROPIC GAS-DIFFUSION COEFFICIENTS

    公开(公告)号:US20230102064A1

    公开(公告)日:2023-03-30

    申请号:US17908889

    申请日:2021-01-05

    Abstract: invention relates to a distributing structure (10) for a fuel cell (1) in the form of a microporous layer, having: a multiplicity of particles (11), wherein the particles (11) are designed to provide the distributing structure (10) with mechanical stability and electrical conductivity, and wherein a multiplicity of pores (P) are formed between the particles (11) for the purposes of distributing reactants (H2, O2) through the distributing structure (10) and of discharging a product water (H2O), the invention providing, for this purpose, a multiplicity of fibres (12), which are distributed within the microporous layer such that the distributing structure (10) has a first diffusion coefficient (D1) in a first planar direction (x) in relation to the plane of extent (x, y) of the microporous layer, and that the distributing structure (10) has a second diffusion coefficient (D2) in a second planar direction (y) in relation to the plane of extent

Patent Agency Ranking