摘要:
A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.
摘要:
A climate control system is presented. The system includes a remote signal input device and a controller. The controller is operable to receive input from the remote signal input device and to control a climate control device. The climate control device is operable to change or maintain an environmental condition. The remote signal input device can be configured to receive an audio input from a speaker of an answering machine. The controller can be configured to control the climate control device by changing a setting of a climate control device control unit. Changing a setting of the climate control device control unit can include turning the climate control device control unit off or on. The controller can be configured to control the climate control device by switching between controlling the climate control device using a first climate control device control unit and a second climate control device control unit.
摘要:
The present invention provides a technology called Pulse-Multiline Excitation or PME. This technology provides a novel approach to fluorescence detection with application for high-throughput identification of informative SNPs, which could lead to more accurate diagnosis of inherited disease, better prognosis of risk susceptibilities, or identification of sporadic mutations. The PME technology has two main advantages that significantly increase fluorescence sensitivity: (1) optimal excitation of all fluorophores in the genomic assay and (2) “color-blind” detection, which collects considerably more light than standard wavelength resolved detection. This technology differs significantly from the current state-of-the-art DNA sequencing instrumentation, which features single source excitation and color dispersion for DNA sequence identification. Successful implementation of the PME technology will have broad application for routine usage in clinical diagnostics, forensics, and general sequencing methodologies and will have the capability, flexibility, and portability of targeted sequence variation assays for a large majority of the population.