摘要:
A method and apparatus for casting a molten metallic material in ingot form are provided wherein the molten metallic material is transported to the ingot mold and an upper surface temperature and temperature distribution of the molten metal pool in the casting mold are measured by an imaging radiometer which is disposed external to a vacuum chamber enclosing the ingot mold, and is disposed to view the ingot pool surface through a sight port. At least one electron beam gun is employed to direct a stream of electrons at the ingot pool surface, the intensity of which is selectively modulated and the impingement of the stream of electrons is simultaneously selectively positioned in order to maintain a desired preselected mold pool surface temperature and temperature distribution thereby yielding a preselected metallurgical structure in the solidified ingot. The imaging radiometer may provide a video signal as an output, and may be connected to a video analyzer and video monitor which are used to provide an image of the surface temperature and temperature distribution, enabling an operator to control the electron beam gun in performing the ingot casting method.
摘要:
A method and apparatus for casting a molten metallic material in ingot form are provided wherein the molten metallic material is transported to the ingot mold and an upper surface temperature and temperature distribution of the molten metal pool in the casting mold are measured by an imaging radiometer which is disposed external to an inert gas filled chamber enclosing the ingot mold, and is disposed to view the ingot pool surface through a sight port. At least one plasma arc torch is employed to direct an arc at the ingot pool surface, the intensity of which is selectively modulated and the impingement of the arc is simultaneously selectively positioned in order to maintain a desired preselected mold pool surface temperature and temperature distribution thereby yielding a preselected metallurgical structure in the solidified ingot. The imaging radiometer may provide a video signal as an output, and may be connected to a video analyzer and video monitor which are used to provide an image of the surface temperature and temperature distribution, enabling an operator to control the plasma arc torch in performing the ingot casting method.
摘要:
A multi-purpose optical sensor operates in the medium-to-far infrared wavelength spectral region to sense the surface temperature of plasma-jet spray coating materials. This plasma itself emits little or no radiation in this region and, accordingly, the output signal from the sensor is used to adjust the electrical input and other variables associated with the plasma spray torch to insure that particles arriving at the substrate surface to be coated are, in fact, in a molten state. The sensor employs infrared filters and, additionally, the sensor is used to monitor not only coating and temperature but also plasma beam divergence and particle seeding density to provide other control functions.In another embodiment, the sensor is used to measure the temperature and size of a molten metal pool in the presence of an electric arc, as in the case of the melting and pouring of metal to form ingots, and to control the electric arc and other melting parameters so as to control the size and temperature of the molten pool. It may also be used to locate the position of foreign matter on the surface of the molten pool and to manipulate the arc so as to move the foreign matter away from the pouring region, thereby restricting the amount of such foreign matter which enters the poured metal stream, thus producing cleaner ingots having improved freedom from inclusions.
摘要:
Two pieces of metal are bonded together at a surface by placing the two pieces into contact at the surface and forging the two pieces in a die which causes substantial displacement of the metal originally at the surface in a direction parallel to and outwardly from the edges of the surface. In this way, many of the defects which are potentially present at the original surface are displaced with moving metal away from the original contact between the two pieces of metal into sacrificial ribs and the remaining defects are exposed to significant strain. A portion of the displaced metal which contains many of the defects and which forms the sacrificial ribs is removed from the resulting bonded work piece as the sacrificial ribs are removed from the work piece. The result is a bond with superior properties and with a bond surface which can be located very precisely. This system is particularly appropriate for forming dual-alloy high-pressure turbine disks for gas turbines in which an annular peripheral ring of a second super-alloy is bonded to a central core of a first super-alloy. The system is particularly effective if, prior to forging, surfaces to be bonded are closely shape-conforming, are very clean, and are diffusion-bonded using hot isostatic pressing while the surfaces are gas-free. The sacrificial ribs are formed by vents in the impression of the forging dies. The vents are adjacent to the outer edges of the bond surface. The system may be accomplished by using one or more strikes of the same dies, or may include multiple strikes in which only one side of the bond is vented during each strike.
摘要:
A method and system for controlling machining processes are provided. The system includes a computer system communicatively coupled to a database. The computer system is configured to receive data relating to manufactured part processes, identify at least one machining process used to manufacture a part and a parameter of the at least one machining process, receive survey data relating to the manufacturing process parameters used during the at least one machining process, and receive identification data for the manufactured part. The computer is further configured to receive data relating to a design of experiment (DOE), determine an low cycle fatigue (LCF) life distribution, identify process parameters that affect the LCF, and determine an allowable range for each identified process parameters for safe operation. The computer system is further configured to output the process window embodied in a specification associated with at least one of the part and the process.
摘要:
An improved method for making a metal powder employs improved apparatus comprising, in combination, a fluid-cooled hearth for receiving metallic material which defines an alloy and which is to be melted, a plasma heat source adapted to melt the metallic material, a powder metal producer, and means to introduce the molten metallic material from the hearth into the powder metal producer. The fluid-cooled walls of the hearth resolidify a portion of the molten metallic material to form a skull as a barrier between the hearth and additional molten alloy produced within the hearth. This method and apparatus restricts introduction of impurities into the molten alloy which is later introduced into the powder metal producer. In one form, a fluid-cooled pouring trough, as a stream control device, can be disposed between the hearth and the powder producer to receive molten metal from the hearth and to introduce it into the powder metal producer.
摘要:
Fatigue crack growth-resistant articles are made from powder metal or cast and wrought gamma prime precipitation strengthened nickel-base superalloy material, wherein a relatively high predetermined minimum strain rate, .epsilon..sub.min, is employed during hot working at or near the alloy's recrystallization temperature; or alternatively a relatively high strain level, .epsilon..sub.min, is employed during cold or warm working at temperatures below the alloy's recrystallization temperature. The worked articles are characterized by a uniform fine grain size, and grains which coarsen uniformly after heating at the supersolvus solutioning temperature, thereby alleviating non-uniform grain growth within the material.
摘要:
Apparatus for producing a metal powder includes a cooled hearth structure in which a metallic alloy is melted and a heat source above the hearth positioned to heat the melt in the hearth. The cooling of the hearth causes a protective hearth skull to form between the melt and the hearth itself. The hearth is placed within an environmental control chamber. A supply structure provides a continuous supply of the metallic alloy to the hearth structure from the exterior of the chamber. A metal powder producer is positioned to receive molten metal from the hearth, and a continuous stream of the molten alloy from the hearth is transferred to the metal powder producer. The transfer is accomplished by tipping the hearth or by teeming through an opening in the bottom of the hearth. The hearth structure can utilize two individual hearths, controllably arranged so that molten metal is drawn from one hearth while the other is recharged.
摘要:
A method and system for controlling machining processes are provided. The system includes a computer system communicatively coupled to a database. The computer system is configured to receive data relating to manufactured part processes, identify at least one machining process used to manufacture a part and a parameter of the at least one machining process, receive survey data relating to the manufacturing process parameters used during the at least one machining process, and receive identification data for the manufactured part. The computer is further configured to receive data relating to a design of experiment (DOE), determine an low cycle fatigue (LCF) life distribution, identify process parameters that affect the LCF, and determine an allowable range for each identified process parameters for safe operation. The computer system is further configured to output the process window embodied in a specification associated with at least one of the part and the process.
摘要:
Methods for error proofing, which also improve material, or information, flow through a process, are described. In one embodiment, the method includes the steps of identifying a process responsible for at least one error, process mapping the identified process, identifying at least one step in the identified process at which scrap and/or nonconformance occurred, and razing the identified process. The step of razing, in the one embodiment, is performed by determining whether a plurality of errors throughout the identified process occurs, and if a plurality of errors are identified throughout the identified process, determining whether a different process can be substituted for the identified process, and if the different process can be substituted for the identified process, then substituting the different process for the identified process. If the different process cannot be substituted for the identified process, then the process further includes performing the steps of determining whether the identified step can be eliminated, and if the step can be eliminated, then eliminating the step.