摘要:
Durable fine wire electrical conductors are robust, durable, small in profile, and light weight, yet capable of operating under extreme environmental conditions. Formed of a glass, silica, sapphire or crystalline quartz fiber core with a metal coating and one or more polymer layers, a unipolar electrical conductor can have an outer diameter as small as about 300 microns or even smaller. The metal buffer coating may be deposited directly on the glass/silica fiber, or upon an intermediate layer between the glass/silica fiber and metal, consisting of carbon and/or polymer. The resulting metallized glass/silica fibers are extremely durable, can be bent through small radii and will not fatigue even from millions of iterations of flexing. Bipolar electrical conductors can include several insulated metallized glass/silica fibers residing side by side, or can be coaxial with two or more insulated metal conductive paths. An outer protective sheath of a flexible polymer material can be included.
摘要:
Durable fine wire electrical conductors are robust, durable, small in profile, and light weight, yet capable of operating under extreme environmental conditions. Formed of a glass, silica, sapphire or crystalline quartz fiber core with a metal coating and one or more polymer layers, a unipolar electrical conductor can have an outer diameter as small as about 300 microns or even smaller. The metal buffer coating may be deposited directly on the glass/silica fiber, or upon an intermediate layer between the glass/silica fiber and metal, consisting of carbon and/or polymer. The resulting metallized glass/silica fibers are extremely durable, can be bent through small radii and will not fatigue even from millions of iterations of flexing. Bipolar electrical conductors can include several insulated metallized glass/silica fibers residing side by side, or can be coaxial with two or more insulated metal conductive paths. An outer protective sheath of a flexible polymer material can be included.
摘要:
Implantable medical devices intended for electrostimulation and sensing devices typically incorporate one or more electrical conductors as leads for electrical stimulation to, or retrieval of localized sensing data from, discrete points in the body, such as the heart. Certain applications require delivery of high intensity electrical pulses, i.e. CRTs, or defibrillators. As described herein a CRT delivers high energy pulses via a durable fine wire lead formed of a glass, silica, sapphire or crystalline quartz fiber core with a metal coating. A unipolar electrical conductor can have an outer diameter of about 150 microns or even smaller. The buffered fibers support conduction of high intensity electrical pulses as required for internal or external defibrillators, or other biomedical applications, as well as non-medical applications. Defibrillation pulses can be transmitted through less cross-sectional area of metal in the subject fine wire conductor than would be the case with conventional solid core metal wires. Multiple such coated fibers can act as a single conductor. An outer protective sheath of a flexible polymer material can be included.
摘要:
Durable fine wire electrical conductors are robust, durable, small in profile, and light weight, yet capable of operating under extreme environmental conditions. Formed of a glass, silica, sapphire or crystalline quartz fiber core with a metal coating and one or more polymer layers, a unipolar electrical conductor can have an outer diameter as small as about 300 microns or even smaller. The metal buffer coating may be deposited directly on the glass/silica fiber, or upon an intermediate layer between the glass/silica fiber and metal, consisting of carbon and/or polymer. The resulting metallized glass/silica fibers are extremely durable, can be bent through small radii and will not fatigue even from millions of iterations of flexing. Bipolar electrical conductors can include several insulated metallized glass/silica fibers residing side by side, or can be coaxial with two or more insulated metal conductive paths. An outer protective sheath of a flexible polymer material can be included.
摘要:
Implantable medical devices intended for electrostimulation and sensing devices typically incorporate one or more electrical conductors as leads for electrical stimulation to, or retrieval of localized sensing data from, discrete points in the body, such as the heart. Certain applications require delivery of high intensity electrical pulses, i.e. CRTs, or defibrillators. As described herein a CRT delivers high energy pulses via a durable fine wire lead formed of a glass, silica, sapphire or crystalline quartz fiber core with a metal coating. A unipolar electrical conductor can have an outer diameter of about 150 microns or even smaller. The buffered fibers support conduction of high intensity electrical pulses as required for internal or external defibrillators, or other biomedical applications, as well as non-medical applications. Defibrillation pulses can be transmitted through less cross-sectional area of metal in the subject fine wire conductor than would be the case with conventional solid core metal wires. Multiple such coated fibers can act as a single conductor. An outer protective sheath of a flexible polymer material can be included.
摘要:
A frame assembly is provided. The frame assembly may include an inner frame disposed in a dimensionally stable relationship with a display screen where the relationship is substantially maintained during an environmental change which produces a variation in a size of the display screen. The frame assembly further includes an outer frame configured to capture the inner frame and accommodate size changes of the inner frame.
摘要:
An image projection system implemented with a projector engine using a reflective light modulator, preferably a Digital Micromirror Device (DMD), operates lying flat with very low profile on a support table. The invention overcomes the disadvantage of previous DMD projectors that require either tilting all or part of the projection system 45 degrees relative to a support table top or packaging the projection system in a thick box that allows light to impinge on the DMD from above or below its light reflecting surface. This is accomplished with a prism assembly that sets up the correct illumination angles for the DMD and directs imaging (output) light along approximately the same vector as that of illumination (input) light incident to the prism assembly. The illumination light and imaging light do not propagate in a common plane within the prism assembly, but the vectors of the illumination light entering and the imaging light exiting the prism assembly are approximately the same. An alternative preferred embodiment of the prism assembly includes a light escape window through which illumination light reflected by the DMD in its off-state escapes from the prism assembly in a direction away from the projection lens. An implementation using a third prism optically fixed to an output prism or forming an integral part of an enlarged output prism is especially advantageous because it can provide a three-point mounting of the prism assembly to the floor of the interior of the projection system housing.
摘要:
A frame assembly is provided. The frame assembly may include an inner frame disposed in a dimensionally stable relationship with a display screen where the relationship is substantially maintained during an environmental change which produces a variation in a size of the display screen. The frame assembly further includes an outer frame configured to capture the inner frame and accommodate size changes of the inner frame.
摘要:
A projector includes a source of polychromatic light that propagates through color filter segments of a color wheel and enters an input aperture of an asymmetrical light integrating tunnel that integrates the filtered light into a uniform pattern at a nonrectangular output aperture of the tunnel. The uniform illumination exiting the nonrectangular output aperture is re-imaged onto a light valve that is mounted obliquely to a longitudinal axis of the tunnel. The image of the nonrectangular output aperture on the light valve compensates for any keystone distortion, illumination overfill and illumination drop-off regions on the light valve, thereby increasing brightness and brightness uniformity across the light valve. The asymmetrical light integrating tunnel may include a trapezoidal input aperture that reduces the time period when adjacent color wheel filter segments are traversing the input aperture, thereby increasing the time period when the input aperture receives light from each single filter segment.