摘要:
A scanning backlight for a stereoscopic 3D liquid crystal display apparatus includes a light guide formed from a plurality of segments. Each segment has a first side and a second side opposite the first side, and a first surface extending between the first and second sides and a second surface opposite the first surface. The first surface substantially re-directs light and the second surface substantially transmits light. The plurality of segments are arranged substantially in parallel and with the second surfaces transmitting light in substantially the same direction to provide backlighting for a stereoscopic 3D liquid crystal display. A first light source is disposed along the first side of each segment for transmitting light into the light guide from the first side, and a second light source is disposed along the second side of each segment for transmitting light into the light guide from the second side. Each segment first and second light source is selectively turned on and off in a particular pattern and each segment light source selectively transmits light into the light guide first side or light guide second side to form a scanning backlight.
摘要:
A scanning backlight for a stereoscopic 3D liquid crystal display apparatus includes a light guide formed from a plurality of segments. Each segment has a first side and a second side opposite the first side, and a first surface extending between the first and second sides and a second surface opposite the first surface. The first surface substantially re-directs light and the second surface substantially transmits light. The plurality of segments are arranged substantially in parallel and with the second surfaces transmitting light in substantially the same direction to provide backlighting for a stereoscopic 3D liquid crystal display. A first light source is disposed along the first side of each segment for transmitting light into the light guide from the first side, and a second light source is disposed along the second side of each segment for transmitting light into the light guide from the second side. Each segment first and second light source is selectively turned on and off in a particular pattern and each segment light source selectively transmits light into the light guide first side or light guide second side to form a scanning backlight.
摘要:
A scanning backlight for a stereoscopic 3D liquid crystal display apparatus includes a light guide formed from a plurality of segments. Each segment has a first side and a second side opposite the first side, and a first surface extending between the first and second sides and a second surface opposite the first surface. The first surface substantially re-directs light and the second surface substantially transmits light. The plurality of segments are arranged substantially in parallel and with the second surfaces transmitting light in substantially the same direction to provide backlighting for a stereoscopic 3D liquid crystal display. A first light source is disposed along the first side of each segment for transmitting light into the light guide from the first side, and a second light source is disposed along the second side of each segment for transmitting light into the light guide from the second side. Each segment first and second light source is selectively turned on and off in a particular pattern and each segment light source selectively transmits light into the light guide first side or light guide second side to form a scanning backlight.
摘要:
An illumination device, such as a backlight for electronic display devices, is disclosed. The illumination device includes a viscoelastic lightguide optically coupled to a light source, and a nanovoided polymeric layer is used in conjunction with the lightguide to manage light emitted by the light source. The viscoelastic lightguide may be a pressure sensitive adhesive.
摘要:
An illumination device, such as a backlight for electronic display devices, is disclosed. The illumination device includes a viscoelastic lightguide optically coupled to a light source, and a nanovoided polymeric layer is used in conjunction with the lightguide to manage light emitted by the light source. The viscoelastic lightguide may be a pressure sensitive adhesive.
摘要:
An illumination device, such as a backlight for electronic display devices, is disclosed. The illumination device includes a lightguide optically coupled to a light source, and a viscoelastic layer and a nanovoided polymeric layer are used in conjunction with the lightguide to manage light emitted by the light source. The viscoelastic layer may be a pressure sensitive adhesive.
摘要:
An illumination device, such as a backlight for electronic display devices, is disclosed. The illumination device includes a lightguide optically coupled to a light source, and a viscoelastic layer and a nanovoided polymeric layer are used in conjunction with the lightguide to manage light emitted by the light source. The viscoelastic layer may be a pressure sensitive adhesive.
摘要:
Microreplicated light redirecting films suitable for use in autostereoscopic displays and backlights are made to incorporate at least one nanovoided layer whose interface with another layer forms an embedded structured surface of the light redirecting film. The nanovoided layer includes a polymer binder and optional nanoparticles, and may have a refractive index less than 1.35 or 1.3. The light redirecting films may be adapted for attachment to one or more other components of an autostereoscopic display, such as a display panel and/or a light guide of a backlight.
摘要:
A backlight may include a light guide and a light input. The light guide may have a light reflection surface and a light emission surface. The light input may include a diverging wedge having a narrow end and opposing side surfaces extending to the narrow end. A light source may be disposed adjacent to one of the opposing side surfaces and may emit light into the light input portion. A multilayer polymeric mirror film may be disposed adjacent to the opposing side surfaces but not in intimate contact therewith and may reflect more than 95% of visible light incident on the multilayer polymeric mirror film.
摘要:
A backlight is disclosed and includes a visible light transmissive body primarily propagating light by TIR with a light input surface and a light output surface and a light guide portion and a light input portion. The light guide portion has a light reflection surface and a light emission surface. The light input portion has opposing side surfaces that are not parallel. One of the opposing surfaces is co-planar with either the light emission surface or the light reflection surface. A light source is disposed adjacent to the light input surface. The light source emits light into the light input portion. A reflective layer is disposed adjacent to or on the opposing side surfaces.