摘要:
A fuel cell power plant (19, 19a) has a plurality of fuel cells (70, 70a, 70c) arranged in a stack (20, 20c), each fuel cell having porous, at least partially hydrophilic water transport plates (75, 81) with fuel (74) and oxidant (82) reactant gas channels, there being water channels (78, 85, 78a, 85a, 78c, 85c) exchanging water with the water transport plates. On shut down, water is retained in the water channels and water transport plates by means of either a micro vacuum pump (46), one or two valves (89, 90, 118, 120), a check valve (95, 99), capillary force in the water channels to prevent water from entering the reactant channels which, if frozen, could block flow of reactant gas upon startup.
摘要:
A fuel cell power plant (19, 19a) has a plurality of fuel cells (70, 70a, 70c) arranged in a stack (20, 20c), each fuel cell having porous, at least partially hydrophilic water transport plates (75, 81) with fuel (74) and oxidant (82) reactant gas channels, there being water channels (78, 85, 78a, 85a, 78c, 85c) exchanging water with the water transport plates. On shut down, water is retained in the water channels and water transport plates by means of either a micro vacuum pump (46), one or two valves (89, 90, 118, 120), a check valve (95, 99), capillary force in the water channels to prevent water from entering the reactant channels which, if frozen, could block flow of reactant gas upon startup.
摘要:
Fuel cells (38) have water passageways (67; 78, 85; 78a, 85a) that provide water through reactant gas flow field plates (74, 81) to cool the fuel cell. The water passageways may be vented to atmosphere (99), by a porous plug (69), or pumped (89, 146) with or without removing any water from the passageways. A condenser (59, 124) receives reactant air exhaust, may have a contiguous reservoir (64, 128), may be vertical, (a vehicle radiator, FIG. 2), may be horizontal, contiguous with the top of the fuel cell stack (37, FIG. 5), or below (124) the fuel cell stack (120). The passageways may be grooves (76, 77; 83, 84) or may comprise a plane of porous hydrophilic material (78a, 85a) contiguous with substantially the entire surface of one or both of the reactant gas flow field plates. Air flow in the condenser may be controlled by shutters (155). The condenser may be a heat exchanger (59a) having freeze-proof liquid flowing through a coil (161) thereof, the amount being controlled by a valve (166). A deionizer (175) may be used.
摘要:
Fuel cells (38) have minute water passageways (67) that provide water through one or both reactant gas flow field plates (74, 82) of each fuel cell, whereby the fuel cell is cooled evaporatively. The water passageways (67; 78, 85; 78a, 85a) may be vented by a porous plug (69), or by a microvacuum pump (89) that does not pump any water from the passageways, or simply vented (99) to atmosphere. A condenser (59) may have a contiguous reservoir (64); the condenser (59) may be vertical, such as a vehicle radiator (FIG. 1), or may be horizontal, contiguous with the top of the fuel cell stack (37, FIG. 5). The passageways may be grooves (76, 77; 83, 84) in the reactant gas flow plates (75, 81) or the passageways may comprise a plane of porous hydrophilic material (78a, 85a) contiguous with substantially the entire surface of one or both of the reactant gas flow field plates.
摘要:
A fuel cell stack (31) includes a plurality of fuel cells (9) each having an electrolyte such as a PEM (10), anode and cathode catalyst layers (13, 14), anode and cathode gas diffusion layers (16, 17), and water transport plates (21, 28) adjacent the gas diffusion layers. The cathode diffusion layer of cells near the cathode end (36) of the stack have a high water permeability, such as greater than 3×10−4 g/(Pa s m) at about 80° C. and about 1 atmosphere, whereas the cathode gas diffusion layer in cells near the anode end (35) have water vapor permeance greater than 3×10−4 g/(Pa s m) at about 80° C. and about 1 atmosphere. In one embodiment, the anode gas diffusion layer of cells near the anode end (35) of the stack have a higher liquid water permeability than the anode gas diffusion layer in cells near the cathode end; a second embodiment reverses that relationship.
摘要:
The invention is a hydrogen passivation shut down system for a fuel cell power plant (10). An anode flow path (24) is in fluid communication with an anode catalyst (14) for directing hydrogen fuel to flow adjacent to the anode catalyst (14), and a cathode flow path (38) is in fluid communication with a cathode catalyst (16) for directing an oxidant to flow adjacent to the cathode catalyst (16) of a fuel cell (12). Hydrogen fuel is permitted to transfer between the anode flow path (24) and the cathode flow path (38). A hydrogen reservoir (66) is secured in fluid communication with the anode flow path (24) for receiving and storing hydrogen during fuel cell (12) operation, and for releasing the hydrogen into fuel cell (12) whenever the fuel cell (12) is shut down.
摘要:
The invention is a hydrogen passivation shut down system for a fuel cell power plant (10). An anode flow path (24) is in fluid communication with an anode catalyst (14) for directing hydrogen fuel to flow adjacent to the anode catalyst (14), and a cathode flow path (38) is in fluid communication with a cathode catalyst (16) for directing an oxidant to flow adjacent to the cathode catalyst (16) of a fuel cell (12). Hydrogen fuel is permitted to transfer between the anode flow path (24) and the cathode flow path (38). A hydrogen reservoir (66) is secured in fluid communication with the anode flow path (24) for receiving and storing hydrogen during fuel cell (12) operation, and for releasing the hydrogen into fuel cell (12) whenever the fuel cell (12) is shut down.
摘要:
The invention is a start up system and method for a fuel cell power plant (10) using a purging of the cathode flow field (38) with a hydrogen rich reducing fluid fuel to minimize corrosion of the cathode electrode (16). The method for starting up the shut down fuel cell power plant (10) includes the steps of: a. purging the cathode flow field (38) with the reducing fluid fuel; b. then, directing the reducing fluid fuel to flow through an anode flow field (28); c. next, terminating flow of the fuel through the cathode flow field (38) and directing an oxygen containing oxidant to flow through the cathode flow field (38); and, d. finally, connecting a primary load (70) to the fuel cell (12) so that electrical current flows from the fuel cell (12) to the primary load (70).
摘要:
The invention is a system and method for shutting down a fuel cell power plant having at least one fuel cell, a primary load, and an auxiliary load that receive electrical current from electrodes of the fuel cell through an external circuit. Shutting down the plant includes disconnecting the primary load; terminating flow of the oxidant through a cathode flow field; connecting the auxiliary load to consume oxygen within the fuel cell; disconnecting the auxiliary load; connecting a power supply to the fuel cell electrodes to increase a concentration of hydrogen within the cathode flow field; and, then, decreasing or eliminating flow of hydrogen into an anode flow field after an equilibrium gas concentration of at least 0.0001% hydrogen, balance fuel cell inert gases, is achieved in both the anode and cathode flow fields.
摘要:
A fuel cell stack (32) includes a plurality of fuel cells in which each fuel cell is formed between a pair of conductive, porous, substantially hydrophilic plates (17) having oxidant reactant gas flow field channels (12-15) on a first surface and fuel reactant gas flow field channels (19, 19a) on a second surface opposite to the first surface, each ˜f the plates being separated from a plate adjacent thereto by a unitized electrode assembly (20) including a cathode electrode (22), having a gas diffusion layer (GDL) an anode electrode (23) having a GDL with catalyst between each GDL and a membrane (21) disposed therebetween. Above the stack is a condenser (33} having tubes (34) that receive coolant air (39, 40} to condense water vapor out of oxidant exhaust in a chamber (43). Inter-cell wicking strips (26) receive condensate and conduct it along the length of the stack to all cells. In-cell wicking strips (1G, 1 ˜a) on one or both surfaces conduct the water from the inter-cell wicking strips downwardly along the entire planform of each cell. Reactant air is provided to an air inlet manifold (47) through an air inlet conduit (48) from an air pump (49).