摘要:
An anode plate 40 for use in a field emission flat panel display device comprises a transparent planar substrate 42 having a plurality of electrically conductive, parallel stripes 46 comprising the anode electrode of the device, which are covered by phosphors 48.sub.R, 48.sub.G and 48.sub.B, and a gettering material 52 in the interstices of the stripes 46. The gettering material 52 is preferably selected from among zirconium-vanadium-iron and barium. The getter 52 may be thermally reactivated by passing a current through it at selected times, or by electron bombardment from microtips on the emitter substrate. The getter 52 may be formed on a substantially opaque, electrically insulating material 50 affixed to substrate 42 in the spaces formed between conductors 46, which acts as a barrier to the passage of ambient light into and out of the device. Methods of fabricating the getter stripes 52 on the anode plate 40 are disclosed.
摘要:
An anode plate 40 for use in a field emission flat panel display device comprises a transparent planar substrate 42 having a plurality of electrically conductive, parallel stripes 46 comprising the anode electrode of the device, which are covered by phosphors 48.sub.R, 48.sub.G and 48.sub.B, and a gettering material 52 in the interstices of the stripes 46. The gettering material 52 is preferably selected from among zirconium-vanadium-iron and barium. The getter 52 may be thermally reactivated by passing a current through it at selected times, or by electron bombardment from microtips on the emitter substrate. The getter 52 may be formed on a substantially opaque, electrically insulating material 50 affixed to substrate 42 in the spaces formed between conductors 46, which acts as a barrier to the passage of ambient light into and out of the device. Methods of fabricating the getter stripes 52 on the anode plate 40 are disclosed.
摘要:
A computer image display device includes a light transparent glass anode plate (10) spaced from a cathode substrate (12) which has a plurality of microtips (14). Plate (10) has an inside surface (25) which is contoured with an array of prisms (36) having equal sides (58, 59) that converge rearwardly toward apexes (38) of peaks (36). Apexes (38) are covered with light absorbing material (47), then covered at anode comb forming regions (51, 52, 53) with conductive material (48). Different color luminescing phosphors (24a, 24b, 24c) are applied over the respective anode combs (51, 52, 53). Sides (58, 59) direct ambient light toward apexes (38) for absorption by material (47). Light emitted by phosphors (24a, 24b, 24c) is directed by valleys (60) toward outside surface (35) of plate (10).
摘要:
A computer image display device includes a light transparent glass anode plate (10) spaced from a cathode substrate (12) which has a plurality of microtips (14). Plate (10) has an inside surface (25) which is contoured with an array of prisms (36) having equal sides (58, 59) that converge rearwardly toward apexes (38) of peaks (36). Apexes (38) are covered with light absorbing material (47), then covered at anode comb forming regions (51, 52, 53) with conductive material (48). Different color luminescing phosphors (24a, 24b, 24c) are applied over the respective anode combs (51, 52, 53). Sides (58, 59) direct ambient light toward apexes (38) for absorption by material (47). Light emitted by phosphors (24a, 24b, 24c) is directed by valleys (60) toward outside surface (35) of plate (10).
摘要:
An mode plate 80 for use in a field emission flat panel display device comprises a transparent planar substrate 88 having a plurality of electrically conductive, parallel stripes 50 comprising the anode electrode of the device, which are covered by phosphors 84.sub.R, 84.sub.G and 84.sub.B. The conductors 50 which are covered by the same color phosphors are electrically interconnected by buses 52, 54, and 56. A substantially opaque, electrically insulating material 86 is affixed to substrate 88 in the spaces between conductors 50, acting as a barrier to the passage of ambient light into and out of the device. In addition, the same substantially opaque, electrically insulating material 86 is formed between the conductors 50 and the buses 52, 54, and 56, thereby providing electrical isolation between the two layers. Opaque material 86 preferably comprises glass having impurities dispersed therein, wherein the impurities may include one or more organic dyes, selected to provide relatively uniform opacity over the visible range of the electromagnetic spectrum. Alternatively, the impurities may include the black oxide of a transition metal such as cobalt.
摘要:
A grooved anode plate 40 for use in a field emission flat panel display device comprises a transparent planar substrate 42 having a plurality of electrically conductive, parallel stripes 46 comprising the anode electrode of the device, which are covered by phosphors 48.sub.R, 48.sub.G and 48.sub.B. In one embodiment, grooves 50, having generally straight sidewalls, are formed in the upper surface of planar substrate 42 at the interstices of conductors 46. In a second embodiment, grooves 50', which provide a substantial undercutting of the material of substrate 42' adjacent the edges of conductors 46', are formed in the upper surface of planar substrate 42' at the interstices of conductors 46'. A substantially opaque, electrically insulating material 52 is affixed to substrate 42 in the grooves 50 formed between conductors 46, acting as a barrier to the passage of ambient light into and out of the device. The grooves 50 in the surface of substrate 42 and the electrical insulating quality of opaque material 52 increase the electrical isolation of conductive stripes 46 from one another, reducing the risk of breakdown due to increased leakage current. Opaque material 52 preferably comprises glass having impurities dispersed therein, wherein the impurities may include one or more organic dyes, selected to provide relatively uniform opacity over the visible range of the electromagnetic spectrum. Alternatively, the impurities may include the black oxide of a transition metal such as cobalt. Two methods of fabricating grooved anode plate 40 are disclosed.
摘要:
A method of fabricating an anode plate 80 for use in a field emission device. The method comprises the steps of providing a substantially transparent substrate 88 having spaced-apart, electrically conductive regions 50 on a surface thereof, then coating the anode plate with a substantially opaque material 86. The opaque material 86 is removed from the surface of the conductive regions 50 in the active area 58, and from selected areas 60 of the interconnect portion of the conductive regions 50. A first bus 52 is provided for electrically connecting a first series 50.sub.R of the conductive regions 50, a second bus 54 is provided for electrically connecting a second series 50.sub.G of the conductive regions 50, and a third bus 56 is provided for electrically connecting a third series 50.sub.B of the conductive regions 50. Luminescent material of a first color 84.sub.R is applied to the first series of conductive regions 50.sub.R, luminescent material of a second color 84.sub.G is applied to the second series of conductive regions 50.sub.G, and luminescent material of a third color 84.sub.B is applied to the third series of conductive regions 50.sub.B.
摘要:
A grooved anode plate 40 for use in a field emission flat panel display device comprises a transparent planar substrate 42 having a plurality of electrically conductive, parallel stripes 46 comprising the anode electrode of the device, which are covered by phosphors 48.sub.R, 48.sub.G and 48.sub.B. In one embodiment, grooves 50, having generally straight sidewalls, are formed in the upper surface of planar substrate 42 at the interstices of conductors 46. In a second embodiment, grooves 50', which provide a substantial undercutting of the material of substrate 42' adjacent the edges of conductors 46', are formed in the upper surface of planar substrate 42' at the interstices of conductors 46'. A substantially opaque, electrically insulating material 52 is affixed to substrate 42 in the grooves 50 formed between conductors 46, acting as a barrier to the passage of ambient light into and out of the device. The grooves 50 in the surface of substrate 42 and the electrical insulating quality of opaque material 52 increase the electrical isolation of conductive stripes 46 from one another, reducing the risk of breakdown due to increased leakage current. Opaque material 52 preferably comprises glass having impurities dispersed therein, wherein the impurities may include one or more organic dyes, selected to provide relatively uniform opacity over the visible range of the electromagnetic spectrum. Alternatively, the impurities may include the black oxide of a transition metal such as cobalt. Two methods of fabricating grooved anode plate 40 are disclosed.
摘要:
An anode plate 50 for use in a field emission flat panel display device comprises a transparent planar substrate 58 having a plurality of electrically conductive, parallel stripes 52 comprising the anode electrode of the device, which are covered by phosphors 54.sub.R, 54.sub.G and 54.sub.B. A substantially opaque, electrically insulating material 56 is affixed to substrate 58 in the spaces between conductors 52, acting as a barrier to the passage of ambient light into and out of the device. The electrical insulating quality of opaque material 56 increases the electrical isolation of conductive stripes 52 from one another, reducing the risk of breakdown due to increased leakage current. Opaque material 56 preferably comprises glass having impurities dispersed therein, wherein the impurities may include one or more organic dyes, selected to provide relatively uniform opacity over the visible range of the electromagnetic spectrum. Alternatively, the impurities may include the black oxide of a transition metal such as cobalt. Opaque material 56 is formed by mixing a TEOS solution with a dye or a source of metallic ions, spinning or spreading the mixture on glass substrate 58, and curing the mixture to drive out the organics and solvents. Two methods of fabricating anode plate 50 are disclosed.
摘要:
An electron emitter plate (110) for an FED image display has an extraction (gate) electrode (22) spaced by a dielectric insulating spacer (125) from a cathode electrode including a conductive mesh (18). Arrays (12) of microtips (14) are located in mesh spacings (16), within apertures (26) formed in clusters (23) in extraction electrode (22). Microtips (14) are deposited through the apertures (26). Apertures (26) are arranged in regular, periodic arrays (23, 23', 123, 123') defining lattices having occupied apertured positions and internal unapertured vacancy positions (150, 150'). The insulating spacer (125) is etched to undercut electrode (22) to connect apertured lattice positions, forming a common cavity (141) for microtips (14) within each mesh spacing (16), and leaving central posts (143) at the unapertured vacancies (150, 150'). The etch-out reduces the dielectric constant factor of gate-to-cathode capacitance in the finished structure. Placing posts at vacancy positions enables gate support over the cavity without sacrificing high microtip density.