摘要:
The present disclosure concerns embodiments of a thermal switch used to control the transfer of heat from a heat source to a heat sink. According to one aspect, the thermal switch can be activated, or turned “on”, so as to establish a path of low thermal resistance between the heat source and the heat sink to facilitate the transfer of heat therebetween. The thermal switch can also be de-activated, or turned “off”, so as to establish a path of high thermal resistance between the heat source and the heat sink to minimize or totally prevent the transfer of heat between the heat source and heat sink. In certain embodiments, the thermal switch includes at least drop of a thermally conductive liquid that thermally couples the heat source to the heat sink whenever the switch is activated.
摘要:
Various micro-transducers incorporating piezoelectric materials for converting energy in one form to useful energy in another form are disclosed. In one embodiment, a piezoelectric micro-transducer can be operated either as a micro-heat engine, converting thermal energy into electrical energy, or as a micro-heat pump, consuming electrical energy to transfer thermal energy from a low-temperature heat source to a high-temperature heat sink. In another embodiment, a piezoelectric micro-transducer is used to convert the kinetic energy of an oscillating or vibrating body on which the micro-transducer is placed into useful electrical energy. A piezoelectric micro-transducer also is used to extract work from a pressurized stream of fluid. Also disclosed are a micro-internal combustion engine and a micro-heat engine based on the Rankine cycle in which a single fluid serves as a working fluid and a fuel.
摘要:
The present disclosure concerns embodiments of a micro-transducer and a thermal switch used to control the transfer of heat into and away from the micro-transducer. In one embodiment, the thermal switch includes at least one drop of a thermally conductive liquid and is operate a to alternately establish a path of high thermal conductance and low thermal conductance between a micro-transducer and a heat source or heat sink via the drop. In another embodiment, the thermal switch includes at least one nanostructure (e.g., a bundle of carbon nanotubes), and is operable to alternately establish a path of high thermal conductance and low thermal conductance between a micro-transducer and a heat source or heat sink via the nanostructure. Also disclosed are embodiments of a thermal switch that can be selectively activated to alternately establish a path of high thermal conductance and low thermal conductance between a heat sink and a heat source.
摘要:
Various micro-transducers incorporating piezoelectric materials for converting energy in one form to useful energy in another form are disclosed. In one embodiment, a piezoelectric micro-transducer can be operated either as a micro-heat engine, converting thermal energy into electrical energy, or as a micro-heat pump, consuming electrical energy to transfer thermal energy from a low-temperature heat source to a high-temperature heat sink. In another embodiment, a piezoelectric micro-transducer is used to convert the kinetic energy of an oscillating or vibrating body on which the micro-transducer is placed into useful electrical energy. A piezoelectric micro-transducer also is used to extract work from a pressurized stream of fluid. Also disclosed are a micro-internal combustion engine and a micro-heat engine based on the Rankine cycle in which a single fluid serves as a working fluid and a fuel.
摘要:
The present disclosure concerns embodiments of a thermal switch used to control the transfer of heat from a heat source to a heat sink. According to one aspect, the thermal switch can be activated, or turned “on”, so as to establish a path of low thermal resistance between the heat source and the heat sink to facilitate the transfer of heat therebetween. The thermal switch can also be de-activated, or turned “off”, so as to establish a path of high thermal resistance between the heat source and the heat sink to minimize or totally prevent the transfer of heat between the heat source and heat sink. In certain embodiments, the thermal switch includes at least drop of a thermally conductive liquid that thermally couples the heat source to the heat sink whenever the switch is activated.
摘要:
Various micro-transducers incorporating piezoelectric materials for converting energy in one form to useful energy in another form are disclosed. In one embodiment, a piezoelectric micro-transducer can be operated either as a micro-heat engine, converting thermal energy into electrical energy, or as a micro-heat pump, consuming electrical energy to transfer thermal energy from a low-temperature heat source to a high-temperature heat sink. In another embodiment, a piezoelectric micro-transducer is used to convert the kinetic energy of an oscillating or vibrating body on which the micro-transducer is placed into useful electrical energy. A piezoelectric micro-transducer also is used to extract work from a pressurized stream of fluid. Also disclosed are a micro-internal combustion engine and a micro-heat engine based on the Rankine cycle in which a single fluid serves as a working fluid and a fuel.