摘要:
A method and apparatus for manufacturing an optical fiber includes the steps and/or means of: drawing a fiber from a heated preform by applying a pulling force to the fiber; spinning the fiber while it is drawn, wherein the step of spinning the fiber includes the sub-steps of winding the fiber on a spin roller by a winding arc, such that a friction force is generated between the fiber and the spin roller resulting from the winding arc and from the pulling force; axially displacing the spin roller such that the fiber is caused to roll over the spin roller surface by the friction force.
摘要:
An apparatus for producing a low-PMD optical fiber having a furnace for melting a lower portion of an optical preform; a traction device for pulling an optical fiber from the lower portion of an optical preform; a spinning device for imparting a substantially constant and unidirectional spin to the optical fiber as it is pulled, which causes the fiber to undergo an elastic torsion; a winding device for winding the optical fiber onto a reel; and a twisting device for imparting to the spun optical fiber a unidirectional twist in a direction opposite the elastic torsion, so as to control the residual twist in the optical fiber. A process for producing the fiber, an optical fiber and a cable are also provided.
摘要:
An optical transmission fiber has a refractive index profile with an area of increased index of refraction at the inner core of the fiber, an annular region positioned radially outward from the inner core with an index of refraction exceeding the index of the inner core, and at least a low dopant content region in a cross-sectional region between the inner core and the annular region. A low loss cladding layer surrounds the core region. The optical transmission fiber with this segmented core profile provides a high effective area, low non-linearity coefficient, nonzero dispersion, and relatively flat dispersion slope.
摘要:
An optical transmission fiber has a refractive index profile with an area of increased index of refraction at the inner core of the fiber, an annular region positioned radially outward from the inner core with an index of refraction exceeding the index of the inner core, and at least a low dopant content region in a cross-sectional region between the inner core and the annular region. A low loss cladding layer surrounds the core region. The optical transmission fiber with this segmented core profile provides a high effective area, low non-linearity coefficient, nonzero dispersion, and relatively flat dispersion slope.
摘要:
An optical fibre tensioning device, receiving at its input an optical fibre from a traction device and capable of supplying the optical fibre from its output to a device for storing the fibre. The tensioning device comprises at least one fixed pulley on which the optical fibre is wound for a first length, and at least one movable pulley on which the optical fibre is wound for a second length. A device for measuring the tension applied to the fibre and a motorized device for moving the movable pulley interact with each other to control a distance (Dp) between axes of the pulleys in such a way as to automatically keep the tension applied to the fibre essentially constant.
摘要:
An optical transmission fiber for use in a metropolitan or access network is disclosed. The transmission line includes a fiber being single mode at a first operating wavelength of around 1310 nm and a second operating wavelength of around 1550 nm. The dispersion of the fiber is negative at one of the first and second wavelengths and positive at the other wavelength, with an absolute value of between about 5 and 15 ps/nm/km. The fiber also has a zero dispersion wavelength that is located between the first and second operating wavelengths, and an effective area at a wavelength around 1550 nm greater than about 60 &mgr;m2. The cabled fiber has a cutoff wavelength less than about 1300 nm. The fiber allows wavelength division multiplexing (WDM) operation in both the bands (1310 nm and 1550 nm) by reducing nonlinear effects such as four-wave mixing (FWM).
摘要:
An optical transmission fiber has a refractive index profile with an area of increased index of refraction at the inner core of the fiber, an annular region positioned radially outward from the inner core with an index of refraction exceeding the index of the inner core, and at least a low dopant content region in a cross-sectional region between the inner core and the annular region. A low loss cladding layer surrounds the core region. The optical transmission fiber with this segmented core profile provides a high effective area, low non-linearity coefficient, nonzero dispersion, and relatively flat dispersion slope.
摘要:
The present invention relates to a method and apparatus for cooling an optical fiber during the drawing process of said fiber. In particular the present method for cooling an optical fiber comprises flowing a cooling gas onto the optical fiber wherein the flow direction of the cooling gas is substantially transversal with respect the longitudinal axis of the fiber. It has been found that by employing a flow of cooling gas being substantially transversal to the longitudinal axis of the drawn fiber, the cooling efficiency of the fiber may be substantially improved. The apparatus according to the invention comprises a hollow elongated body, said hollow elongated body having at least one wall defining an internal elongated space through which the drawn fiber passes wherein the at least one wall of said hollow elongated body is provided with at least one longitudinal opening through which a cooling gas is introduced into the hollow body and at least one longitudinal opening through which said cooling gas is removed from said hollow body.
摘要:
A method for manufacturing an optical fiber (100) having low PMD, comprises the steps of: a) heating at least one end portion (3a) of a preform (3); b) drawing an optical fiber (100) from a free end of said heated end portion (3a) along a fiber drawing axis (I—I); c) coating said optical fiber (100) with a suitable coating material; d) applying to said coated optical fiber (100) a torque about said fiber drawing axis (I—I), e) winding said coated optical fiber (100) onto a collecting spool (9). According to the invention, step d) is carried out by means of a pulley (16) supported upstream of said collecting spool (9) and rotated about the fiber drawing axis (I—I), said optical fiber (100) being wound up onto said pulley (16) for an angle of at least about 360°. Advantageously, such method also allows to notably increase the amount of optical fiber produced per unit of time with respect to the prior art.
摘要:
A method and device for manufacturing a preform for optical fibers through chemical deposition on a substrate for deposition arranged vertically is described, comprising a chemical deposition chamber including at least one gripping member rotatably mounted about an axis Z-Z and adapted to hold at least one end of at least one elongated element constituting a substrate for chemical deposition for the formation of a preform for optical fibers. The chamber includes, moreover, at least one burner which is mobile along a direction Z substantially parallel to said axis Z-Z and adapted to deposit, on said at least one elongated element, a chemical substance for the formation of a preform and at least one suction element for collecting exhaust chemical substances, said at least one suction element being arranged on the opposite side to said at least one burner with respect to said axis Z-Z and being mobile along said direction Z. Said at least one suction element is advantageously positioned at a different height (preferably lower) with respect to that of said at least one burner to optimise the fluid dynamic conditions inside the chemical deposition chamber.