Abstract:
An automated trash management system for remotely measuring the fullness of a plurality of trash containers is disclosed. Each container is provided with a remote sensing unit for generating a signal proportional to a characteristic of the container by which the extent of fullness of the container may be determined. A transmission linkage, typically a telephone line, is provided from each remote sensing unit to a central unit, where a data base of the signals transmitted from a particular trash container may be stored and analyzed. A hauler is called from the central unit location by a user after a determination from the data base that a particular trash container is in a condition of fullness warranting emptying. Several embodiments of the invention are disclosed in that for compactor equipped containers, the instantaneous pressure applied to the compression member of the compactor is monitored and processed either with limit switch data or without to determine a sequence of data signals indicative of the fullness of the container. In another pressure monitoring embodiment, the work of the compression member during a compaction stroke, is determined and analyzed as to the extent of fullness of the container. In another embodiment, current applied to the motor which drives the hydraulic pump of the compression member is monitored as a substitute for measuring pressure directly. In an embodiment of the invention applicable for non-compaction containers and compaction containers alike, a weight signal proportional to the weight of the container is compared to a predetermined weight signal for each container to determine its degree of fullness.
Abstract:
An improved system, method and apparatus for control of an instantaneous flow-through fluid heater system is disclosed. The control incorporates a logic control method providing modulation of power in small steps to a plurality of heating elements retaining responsiveness to closed-loop control needs without inducing light flicker. Further, the life of the coils of heating circuit electromechanical relays are extended by energizing the coils with a pulse-width-modulated drive decreasing in duty cycle and thus the latent coil heat when an increase in mains voltage is sensed. The life of the contacts of same relays are extended by inhibiting heating element triac drive immediately upon sensing loss of relay coil power, such as by an over temperature limit switch opening, thus ensuring that relay contacts open with zero heating element current. In addition to the software “watchdog timer” internal to the microcontroller, a redundant fail-safe circuit external to the microcontroller prevents a program lockup condition from leaving any heating element triac or relay drive in an energized state. A combination of control hardware and program provide self-diagnostic detection of an inoperative thermistor, stuck relay, or a failed triac or heating element. An improved means of sensing water level is disclosed incorporating a low-level, high frequency signal, allowing detection of non-conducting distilled water and the reliable detection of water in the presence of main-frequency currents as would exist in ungrounded sheathed heating elements with electrical leakage or as would exist with bare-elements.
Abstract:
Where access doors are used for pets, poultry, farm animals, traps, or human access, this invention describes a drive mechanism for moving the door. The access door panel could be applied to a cage, house, coop, trap, feed receptacle, or other application. The drive mechanism of the automatic door is described here as a sprocket that directly engages with the movable door panel. Manufacture of the sprocket and door panel is such that can be punched from raw sheet metal and not requiring precision milling processes. The function provides opening and closing by sliding or swiveling the door panel. Holding the door panel in place is an important additional function of the direct drive mechanism of this invention.
Abstract:
An automated trash management system for remotely measuring the fullness of a plurality of trash containers is disclosed. Each container is provided with a remote sensing unit for generating a signal proportional to a characteristic of the container by which the extent of fullness of the container may be determined. A transmission linkage, typically a telephone line, is provided from each remote sensing unit to a central unit, where a data base of the signals transmitted from a particular trash container may be stored and analyzed. A hauler is called from the central unit location by a user after a determination from the data base that a particular trash container is in a condition of fullness warranting emptying. Several embodiments of the invention are disclosed in that for compactor equipped containers, the instantaneous pressure applied to the compression member of the compactor is monitored and processed either with limit switch data or without to determine a sequence of data signals indicative of the fullness of the container. In another pressure monitoring embodiment, the work of the compression member during a compaction stroke, is determined and analyzed as to the extent of fullness of the container. In another embodiment, current applied to the motor which drives the hydraulic pump of the compression member is monitored as a substitute for measuring pressure directly. In an embodiment of the invention applicable for non-compaction containers and compaction containers alike, a weight signal proportional to the weight of the container is compared to a predetermined weight signal for each container to determine its degree of fullness.
Abstract:
An automated trash management system for measuring the fullness of a plurality of trash containers, each trash container associated with a packing system having a compression member for engaging and compacting the trash in the container and, optionally having a limit switch activated by the compression member when the compression member is fully extended for controlling the movement of the compression member by the packing system. The automated trash management system comprises a plurality of remote status units each in association with a trash container comprising a sensing device for monitoring the pressure provided to the compression member by the compacting system and means for determining the fullness of the trash container based upon the monotonic increase in pressure associated with the compression member engaging and compacting the trash in a container, a central unit for receiving the container fullness calculations from each remote status unit and for compiling a data base of the fullness of each trash container and a communications linkage for transferring the fullness calculations from said plurality of remote status units to the central units such that the fullness of each trash container can be monitored at the single location of the central unit, and from the same single location, authorization to a hauler to empty the trash containers can be restricted to only those containers which are approaching full thereby reducing the frequency of and the expense of hauling.
Abstract:
A device controller synchronizes a counter to the detection of sunrise or sunset by photoelectrically sensing daylight, thereby establishing an approximate time reference for scheduling the timing of device activations to occur at any time of day or night. An uncalibrated method of measuring sunlight yields more reliable scheduling, relative to sunrise and sunset events. The integral approximate time reference is kept synchronized, even if occasional faults in detection of sunrise or sunset occur. The rules employed to establish and maintain synchronization, and the dynamically variable rules of evaluating changes in light intensity, contribute to the reliable performance of the controller apparatus. Inherently self-adapting and automatic, a potentiometer for setting a time parameter input and a push-button for setting a time parameter input are combined in the apparatus in such a way to yield further utility without complicating the programmability. Additionally, for animal feeder applications, a test mode utilizes a modulates activation of the feed motor to produce audible warning of imminent motor activation.
Abstract:
A device controller synchronizes a counter to the detection of sunrise or sunset by photoelectrically sensing daylight, thereby establishing an approximate time reference for scheduling the timing of device activations to occur at any time of day or night. An uncalibrated method of measuring sunlight yields more reliable scheduling, relative to sunrise and sunset events. The integral approximate time reference is kept synchronized, even if occasional faults in detection of sunrise or sunset occur. The rules employed to establish and maintain synchronization, and the dynamically variable rules for evaluating changes in light intensity, contribute to the reliable performance of the controller apparatus. Inherently self-adapting and automatic, a potentiometer for setting a time parameter input and a push-button for setting a time parameter input are combined in the apparatus in such a way to yield further utility without complicating the programmability. Additionally, for animal feeder applications, a test mode utilizes a modulates activation of the feed motor to produce audible warning of imminent motor activation.
Abstract:
A keyboard assembly having keys which provide input signals to a processing unit includes a flexible printed circuit and underlying mat which enable the keyboard to be warped upward at its center by a system of cams which are driven by a controlled motor. Such warping induces rotation of the forearms of the user so as to have ergonomic value with respect to repetitive stress trauma.