摘要:
Techniques for evaluating the accuracy of a predicted effectiveness of an improvement to an infrastructure include collecting data, representative of at least one pre-defined metric, from the infrastructure during first and second time periods corresponding to before and after a change has been implemented, respectively. A machine learning system can receive compiled data representative of the first time period and generate corresponding machine learning data. A machine learning results evaluator can empirically analyze the generated machine learning data. An implementer can implement the change to the infrastructure based at least in part on the data from a machine learning data outputer. A system performance improvement evaluator can compare the compiled data representative of the first time period to that of the second time period to determine a difference, if any, and compare the difference, if any, to a prediction based on the generated machine learning data.
摘要:
The disclosed subject matter provides systems and methods for allocating resources within an infrastructure, such as an electrical grid, in response to changes to inputs and output demands on the infrastructure, such as energy sources and sinks. A disclosed system includes one or more processors, each having respective communication interfaces to receive data from the infrastructure, the data including infrastructure network data, one or more software applications, operatively coupled to and at least partially controlling the one or more processors, to process and characterize the infrastructure network data; and a display, coupled to the one or more processors, for visually presenting a depiction of at least a portion of the infrastructure including any changes in condition thereof, and one or more controllers in communication with the one or more processors, to manage processing of the resource, wherein the resource is obtained and/or distributed based on the characterization of the real time infrastructure data.
摘要:
A capital asset planning system for selecting assets for improvement within an infrastructure that includes one or more data sources descriptive of the infrastructure, one or more databases, coupled to the one or more data sources, to compile the one or more data sources, one or more processors, each coupled to and having respective communication interfaces to receive data from the one or more databases. The processor includes a predictor to generate a first metric of estimated infrastructure effectiveness based, at least in part, on a current status of the infrastructure, a second metric of estimated infrastructure effectiveness based, at least in part, on a user-selected, proposed changed configuration of the infrastructure, and a net metric of infrastructure effectiveness based, at least in part, on said first metric and said second metric. The system also includes a display, coupled to have the one or more processors, for visually presenting the net metric of infrastructure effectiveness, in which the assets for improvement are selected based, at least in part, on the net metric of infrastructure effectiveness.
摘要:
Boosting algorithms are provided for accelerated machine learning in the presence of misclassification noise. In an exemplary embodiment, a machine learning method having multiple learning stages is provided. Each learning stage may include partitioning examples into bins, choosing a base classifier for each bin, and assigning an example to a bin by counting the number of positive predictions previously made by the base classifier associated with the bin.
摘要:
An Innervated Stochastic Controller optimizes business decision-making under uncertainty through time. The Innervated Stochastic Controller uses a unified reinforcement learning algorithm to treat multiple interconnected operational levels of a business process in a unified manner. The Innervated Stochastic Controller generates actions that are optimized with respect to both financial profitability and engineering efficiency at all levels of the business process. The Innervated Stochastic Controller can be configured to evaluate real options. In one embodiment of the invention, the Innervated Stochastic Controller is configured to generate actions that are martingales. In another embodiment of the invention, the Innervated Stochastic Controller is configured as a computer-based learning system for training power grid operators to respond to grid exigencies.
摘要:
A single intranet, internet, or World Wide Web-accessible interface is provided for, initiation of, interactive adjustments to, and access to the outputs of an integrated workflow of a plurality of analytical computer applications for characterization and analysis of traits and optimal management of the extraction of oil, gas, and water from a subsurface reservoir. By combining disparate analytical application tools in a seamless and remotely accessible, package, incompatibility problems caused by the disparate nature of petroleum analysis methods is reduced. The assumptions, analytic processes, and input data used for one analysis may be readily retrieved and re-evaluated for that reservoir or for future evaluations of the same or other reservoirs. Thus a flexible database of analysis tools and data may be implemented for access, input, and output of workflow and analytical data in the field, in conjunction with standard main computer servers, software and plug-ins, and portable remote computers.
摘要:
Techniques for evaluating the accuracy of a predicted effectiveness of an improvement to an infrastructure include collecting data, representative of at least one pre-defined metric, from the infrastructure during first and second time periods corresponding to before and after a change has been implemented, respectively. A machine learning system can receive compiled data representative of the first time period and generate corresponding machine learning data. A machine learning results evaluator can empirically analyze the generated machine learning data. An implementer can implement the change to the infrastructure based at least in part on the data from a machine learning data outputer. A system performance improvement evaluator can compare the compiled data representative of the first time period to that of the second time period to determine a difference, if any, and compare the difference, if any, to a prediction based on the generated machine learning data.
摘要:
A computer-aided lean management (CALM) controller system recommends actions and manages production in an oil and gas reservoir/field as its properties and conditions change with time. The reservoir/field is characterized and represented as an electronic-field (“e-field”). A plurality of system applications describe dynamic and static e-field properties and conditions. The application workflows are integrated and combined in a feedback loop between actions taken in the field and metrics that score the success or failure of those actions. A controller/optimizer operates on the combination of the application workflows to compute production strategies and actions. The controller/optimizer is configured to generate a best action sequence for production, which is economically “always-in-the-money.”
摘要:
A computer-aided lean management (CALM) controller system recommends actions and manages production in an oil and gas reservoir/field as its properties and conditions change with time. The reservoir/field is characterized and represented as an electronic-field (“e-field”). A plurality of system applications describe dynamic and static e-field properties and conditions. The application workflows are integrated and combined in a feedback loop between actions taken in the field and metrics that score the success or failure of those actions. A controller/optimizer operates on the combination of the application workflows to compute production strategies and actions. The controller/optimizer is configured to generate a best action sequence for production, which is economically “always-in-the-money.”
摘要:
The disclosed subject matter provides systems and methods for allocating resources within an infrastructure, such as an electrical grid, in response to changes to inputs and output demands on the infrastructure, such as energy sources and sinks. A disclosed system includes one or more processors, each having respective communication interfaces to receive data from the infrastructure, the data comprising infrastructure network data, one or more software applications, operatively coupled to and at least partially controlling the one or more processors, to process and characterize the infrastructure network data; and a display, coupled to said one or more processors, for visually presenting a depiction of at least a portion of the infrastructure including any changes in condition thereof, and one or more controllers in communication with the one or more processors, to manage processing of the resource, wherein the resource is obtained and/or distributed based on the characterization of said real time infrastructure data.