摘要:
The disclosed subject matter relates to an integrated decision support “cockpit” or control center for displaying, analyzing, and/or responding to, various events and contingencies that can occur within an electrical grid.
摘要:
Techniques for evaluating the accuracy of a predicted effectiveness of an improvement to an infrastructure include collecting data, representative of at least one pre-defined metric, from the infrastructure during first and second time periods corresponding to before and after a change has been implemented, respectively. A machine learning system can receive compiled data representative of the first time period and generate corresponding machine learning data. A machine learning results evaluator can empirically analyze the generated machine learning data. An implementer can implement the change to the infrastructure based at least in part on the data from a machine learning data outputer. A system performance improvement evaluator can compare the compiled data representative of the first time period to that of the second time period to determine a difference, if any, and compare the difference, if any, to a prediction based on the generated machine learning data.
摘要:
The present application provides methods and systems for quantitatively predicting an effectiveness of a proposed capital improvement project based on one or more previous capital improvement projects representative of one or more physical assets and including one or more attributes that includes defining a first sample pool from the previous capital improvement project data in which said previous capital improvement project has been performed, defining a second sample in which the previous capital improvement project has not been performed, the second sample pool including one or more attribute values that are the same as, or similar to, the attribute values for the first sample pool, generating a performance metric for each of the first and second sample pools, comparing the performance metric from the first sample pool with the performance metric from the second sample pool to determine a net performance metric, and, generating a prediction of effectiveness of the proposed capital improvement project concerning based on said net performance metric.
摘要:
A machine learning system creates failure-susceptibility rankings for feeder cables in a utility's electrical distribution system. The machine learning system employs martingale boosting algorithms and Support Vector Machine (SVM) algorithms to generate a feeder failure prediction model, which is trained on static and dynamic feeder attribute data. Feeders are dynamically ranked by failure susceptibility and the rankings displayed to utility operators and engineers so that they can proactively service the distribution system to prevent local power outages. The feeder rankings may be used to redirect power flows and to prioritize repairs. A feedback loop is established to evaluate the responses of the electrical distribution system to field actions taken to optimize preventive maintenance programs.
摘要:
The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.
摘要:
Techniques for evaluating the accuracy of a predicted effectiveness of an improvement to an infrastructure include collecting data, representative of at least one pre-defined metric, from the infrastructure during first and second time periods corresponding to before and after a change has been implemented, respectively. A machine learning system can receive compiled data representative of the first time period and generate corresponding machine learning data. A machine learning results evaluator can empirically analyze the generated machine learning data. An implementer can implement the change to the infrastructure based at least in part on the data from a machine learning data outputer. A system performance improvement evaluator can compare the compiled data representative of the first time period to that of the second time period to determine a difference, if any, and compare the difference, if any, to a prediction based on the generated machine learning data.
摘要:
A computer-aided lean management (CALM) controller system recommends actions and manages production in an oil and gas reservoir/field as its properties and conditions change with time. The reservoir/field is characterized and represented as an electronic-field (“e-field”). A plurality of system applications describe dynamic and static e-field properties and conditions. The application workflows are integrated and combined in a feedback loop between actions taken in the field and metrics that score the success or failure of those actions. A controller/optimizer operates on the combination of the application workflows to compute production strategies and actions. The controller/optimizer is configured to generate a best action sequence for production, which is economically “always-in-the-money.”
摘要:
The disclosed subject matter relates to an integrated decision support “cockpit” or control center for displaying, analyzing, and/or responding to, various events and contingencies that can occur within an electrical grid.
摘要:
A computer-aided lean management (CALM) controller system recommends actions and manages production in an oil and gas reservoir/field as its properties and conditions change with time. The reservoir/field is characterized and represented as an electronic-field (“e-field”). A plurality of system applications describe dynamic and static e-field properties and conditions. The application workflows are integrated and combined in a feedback loop between actions taken in the field and metrics that score the success or failure of those actions. A controller/optimizer operates on the combination of the application workflows to compute production strategies and actions. The controller/optimizer is configured to generate a best action sequence for production, which is economically “always-in-the-money.”
摘要:
The disclosed subject matter provides systems and methods for allocating resources within an infrastructure, such as an electrical grid, in response to changes to inputs and output demands on the infrastructure, such as energy sources and sinks. A disclosed system includes one or more processors, each having respective communication interfaces to receive data from the infrastructure, the data including infrastructure network data, one or more software applications, operatively coupled to and at least partially controlling the one or more processors, to process and characterize the infrastructure network data; and a display, coupled to the one or more processors, for visually presenting a depiction of at least a portion of the infrastructure including any changes in condition thereof, and one or more controllers in communication with the one or more processors, to manage processing of the resource, wherein the resource is obtained and/or distributed based on the characterization of the real time infrastructure data.