摘要:
A system and method are provided for simplifying off-line quantification of ultrasound images by displaying a graphical user interface showing a real-time ultrasound image for enabling a user to freeze the real-time ultrasound image to display an image sequence capable of being modified and played back by the user. The graphical user interface displays graphs or curves providing data related to the ultrasound images. Each data point on the curves represents one ultrasound image of the ultrasound images. When the user selects a particular data point on a curve of a graph, the corresponding ultrasound image is displayed by the graphical user interface. The user can then select another data point on the same curve or another curve to display another corresponding ultrasound image. The two ultrasound image framescan then be compared. The system and method of the present invention further provide the ability for a user to select a region of interest within one of the displayed images to display parameters associated with the selected region of interest for the two ultrasound images.
摘要:
A system and method are provided for simplifying off-line quantification of ultrasound images by displaying a graphical user interface showing a real-time ultrasound image for enabling a user to freeze the real-time ultrasound image to display an image sequence capable of being modified and played back by the user. Upon freezing the real-time image, the graphical user interface displays a tagging system having a corresponding identification tag for each ultrasound image of the image sequence. The graphical user interface further displays time intensity curves each corresponding to an ROI in the frozen image. When the user selects a particular ROI in the frozen image, the curve corresponding to the selected ROI is brightened and the other curves are dimmed.
摘要:
A method and system are described for displaying an ultrasonic parametric image showing tissue perfusion in registration with an anatomical ultrasonic image of the tissue containing the blood flow. The relative opacities of the parametric image and the anatomical image can be varied, enabling the clinician to view both the perfusion parameters and the blood flow simultaneously or in rapid succession. In an illustrated embodiment the anatomical image or the parametric image can be viewed alone, or in anatomical registration with different or equal opacities. The relative opacity can be changed in a smoothly continuous or stepwise manner.
摘要:
A method and system of imaging is provided. The system can include an imaging system (10) having at least one probe (120) for transmitting imaging energy into a region (150) of a body (50) and receiving response energy; a display device (170); and a processor (100) operably coupled to the at least one probe and the display device. The processor can generate a first image based on the response energy. The processor can present the first image on the display device. The processor can present on the display device a second image of the same plane or volume as the first image. The first image is different from the second image. The processor can retrieve a designation of a region of interest from a clinician that is associated with one of the first and second images. The processor can compare the first image with the second image for graphical differences, and the processor can present the region of interest on the other of the second image based at least in part on the graphical differences. Other embodiments are disclosed.
摘要:
In an ultrasound imaging system, an ultrasound scanning assembly (USC) provides volume data (VD) resulting from a three-dimensional scan of a body (BDY). A region of interest detector (RDT) detects a region within the volume data (VD) characterized by a variation of at least one data parameter, which exceeds a margin. A slice generator (SLG) may then generates-slices (SX) from the region that has been detected. These slices (SX) can be displayed on a display device (DPL).
摘要:
A method and system for tracing a tissue border in a medical diagnostic image are described in which a diagnostic image containing the tissue to be traced is acquired. A user manipulates a cursor on the image display to designate three landmarks on the boundary of the tissue. An automated border detector then fits a stored boundary shape to the three landmarks. The fitted border can thereafter be adjusted to precisely fit the boundary by a rubberbanding process. In an illustrated embodiment the myocardium is traced in an image of the left ventricle by first clicking on the mitral valve corners and the apex, then fitting an endocardial border to these three landmarks, then clicking on the apex of the epicardium, then fitting an epicardial border to the epicardial apex and the mitral valve corners.
摘要:
In a distributed object system, the services available on the network are modeled as network objects. A client typically communicates with and uses these objects using Internet connections. As the number of clients increase the servers can get overwhelmed by the number of connections coming into the server resulting in sluggish response and/or loss of service. The invention describes the mechanisms for reducing the required number of connections by automatically concentrating multiple connections onto a single connection. This is done by introducing shared intermediate connection concentrators called gateways. When the client invokes on an external object reference, the ORB running on the client automatically forwards the request to a gateway assigned to it, which then forwards it onto a shared connection to the server. The solution is symmetrical—if the server invokes on an object running inside the client, the invocation again flows through the gateway. The mechanisms described here do not require any explicit programming and can be turned ON or OFF via configuration. The disclosure also describes several policy and/or algorithm based schemes for assigning clients to gateways. Advantages of this invention include reduced interference, improved communication bandwidth, fault tolerance, modularity, scalability, and more efficient and cost-effective base stations and mobile stations.
摘要:
A method for efficiently padding a macroblock of a video object plane employs two new instructions. The instructions, PadToRight and PadToLeft, are applied in alternating sequence during a PadPass 1 operation and a PadPass 2 operation. The results of these two operations are then averaged to pad each transparent pixel in each row of a macroblock that includes at least one opaque pixel. A Shift_in register is used to temporarily store data to facilitate the operation implemented by these instructions. Once the transparent pixels in each row have been padded horizontally, pixels in rows having shape data equal to zero (indicating all pixels in the row are transparent) are padded in a pre-processing step, followed by an upward propagation step. The two instructions are preferably implemented using 2:1 multiplexers implemented with an arithmetic logic unit. The method is particularly useful in set-top boxes, games, and other video applications.
摘要:
A boundary macroblock of a video object is padded without significant synchronization overhead between a host processor and an existing coprocessor. The host processor determines horizontal and vertical graphics primitives as a function of shape data stored in a host memory. The shape data determine whether a dot, a line, or a rectangle primitive should be used to pad transparent pixels in the macroblock. The host processor communicates the primitives to a coprocessor, which renders the primitives in an interleaved pipeline fashion to pad transparent pixels of the macroblock based on texture data stored in video memory. The flow of primitives is in one direction from the host processor to the graphics coprocessor, and the texture data is not transferred back and forth between the host processor and coprocessor. This technique is especially useful for enabling acceleration of MPEG-4 video decoding utilizing existing coprocessors capable of accelerating MPEG-1/2 video decoding.
摘要:
A system and method is disclosed for rendering an ultrasound volume. An external image of an ultrasound volume is generated. A fractional part of the external image corresponds to a fractional portion of the ultrasound volume. A composite image of the ultrasound is generated using the external image, wherein the fractional part of the external image is replaced with an internal image of the ultrasound volume fractional portion. The internal image may be generated by changing a value of a visualization parameter used to generate the external image to a value more suitable for rendering an internal image. The ultrasound volume may include a organic structure, wherein the external image depicts an outer surface of the organic structure, and the internal image depicts a vascularity of the organic structure, such that the composite image simultaneously depicts both an outer surface and the vascularity of the organic structure.