Abstract:
The invention relates to interpreting the change in the increment of the RTP TS field as occurring either due to silence suppression for a voice flow or a change in sampling/frame rate of a video flow. By interpreting this change correctly, the value of the TS_STRIDE field in robust header compression may be correctly calculated leading to efficient header compression performance. In one aspect, there is disclosed a method of improving ROHC between an Access Network (AN) having a compressor and an Access Terminal (AT) having a decompressor, comprising providing flow information to the compressor relating to a change in the increment of an RTP TS field of a header; determining the change in the increment of an RTP TS field as occurring either due to silence suppression or due to a change in a sampling/frame rate; and taking appropriate action for TS_STRIDE.
Abstract:
Examples disclosed herein relate to methods and systems for enhancing performance of robust header compression (RoHC) compressor when encountering silence suppression. In one example, an RTP timestamp increment is calculated for successive packets, until a predetermined number of packets have a constant timestamp increment value. The constant RTP timestamp increment value is assigned as a timestamp stride (TS_STRIDE) value for compression, the value of each RTP timestamp (TS) is scaled by timestamp stride (TS_STRIDE) and the header is compressed using the assigned value.
Abstract:
Examples disclosed herein relate to methods and systems for enhancing performance of robust header compression (RoHC) compressor when encountering silence suppression. In one example, an RTP timestamp increment is calculated for successive packets, until a predetermined number of packets have a constant timestamp increment value. The constant RTP timestamp increment value is assigned as a timestamp stride (TS_STRIDE) value for compression, the value of each RTP timestamp (TS) is scaled by timestamp stride (TS_STRIDE) and the header is compressed using the assigned value.
Abstract:
A system and method where a computing device reads an authentication phrase from a single data field user input. The authentication phrase input will typically be checked against a registered user database in order to determine whether the new input matches currently registered phrases. Should the user enter an authentication phrase that currently doesn't match any existing phrases, the user will typically be asked to try again. However, in cases where the user enters a matching authentication phrase, the user typically will be matched in the registered user database and gain access to further information about the user from a second database. Then the user is authenticated into a multi-user computer applications and systems and logged in.
Abstract:
A method and apparatus for obtaining content with reduces round trip times is provided. The method may comprise transmitting, from a device, a primary content item request to a proxy server to obtain a primary content item using a first protocol, receiving the primary content item from the remote proxy using the first protocol, generating one or more secondary content item requests for one or more secondary content items associated with the primary content item, transmitting the one or more secondary content item requests to the proxy server using a second protocol, wherein the second protocol decouples the one or more secondary content item requests from an acknowledgement of receipt of the one or more secondary content item requests, and receiving at least one of the one or more secondary content items from the proxy server using the second protocol.
Abstract:
An apparatus and method for controlling idle mode radio measurements comprising: determining if a radio measurement is less than a radio threshold; determining a time duration in which the radio measurement is less than the radio threshold; determining if the time duration is greater than a time measurement threshold; and obtaining at least one other radio measurement from at least one base station which is not a serving cell.
Abstract:
A method for implementing a software installation process so as to install, modify or uninstall a software program. The software installation process has a plurality of sequential steps, and the method comprises recording, for each sequential step commenced, step metadata identifying the sequential step so that the step metadata is associated with the software program. The step metadata is recorded in recoverable storage.
Abstract:
An apparatus and a method are disclosed for jointly selecting precoding matrices for a plurality of received transmissions, such as those that might be received from a primary serving cell and a secondary serving cell in a multi-flow radio access network wherein each of the serving cells is configured to provide a MIMO transmission. Here, by jointly selecting the precoding matrices, interference from each of the downlink transmissions upon the other transmission can be reduced, thus improving overall performance at the receiving entity.
Abstract:
Systems and methodologies are described that facilitate indicating channel resource usage information for receiving additional channel resources in a wireless network. An access point can initially receive a set of channel resources from a network controller for providing wireless network access to one or more devices. The access point can grant and/or deny requests for one or more of the channel resources from a plurality of devices and can feedback information to the network controller regarding the granting/denying. The network controller can determine a load on the access point based at least in part on the feedback information and adjust channel resource allocation based on the load. Thus, where an access point has granted close to capacity of allocated resources to one or more devices, the network controller can provide additional resources to the access point based on received feedback information related to the granted resources.
Abstract:
A system and method enable wireless user equipment (UE) to undergo a serving radio network subsystem (SRNS) relocation to a radio network controller (RNC) that does not support a fast dormancy feature while maintaining synchronization with the packet-switched domain of the core network. The UE is made aware of whether the target RNC supports the fast dormancy feature by way of an indication provided to the UE in a reconfiguration message provided by the source RNC, that is, the RNC to which the UE was connected prior to the SRNS relocation. In this way, the UE can behave accordingly whether or not the target RNC supports the fast dormancy feature.