Abstract:
An optical sensor includes a light receiving unit and a calculating unit. The light receiving unit includes a plurality of light receiving elements and a plurality of color filters. The plurality of light receiving elements include a first light receiving element and a second light receiving element through which a photocurrent flows when receiving light. The plurality of color filters include a yellow filter that covers a light receiving surface of the first light receiving element and a red filter that covers a light receiving surface of the second light receiving element. The calculating unit calculates an intensity of a yellow wavelength band based on a difference between a first output signal obtained from the photocurrent of the first light receiving element and a second output signal obtained from the photocurrent of the second light receiving element.
Abstract:
A photodetector includes a semiconductor substrate; a light receiving part for signal detection and an infrared light receiving part which are formed in the semiconductor substrate and are covered at least by first color filters having a common color; and second color filters which overlap with the first color filters on the infrared light receiving part and are configured to block light in a wavelength range transmitting through the first color filters.
Abstract:
A photodetector includes a semiconductor substrate; a light receiving part for signal detection and an infrared light receiving part which are formed in the semiconductor substrate and are covered at least by first color filters having a common color; and second color filters which overlap with the first color filters on the infrared light receiving part and are configured to block light in a wavelength range transmitting through the first color filters.
Abstract:
A photodetection device of the present invention includes a semiconductor substrate which is defined such that a first light-receiving portion and a second light-receiving portion are spaced from one another, and an optical filter which is formed on the semiconductor substrate, and includes a first filter which is disposed so as to cover the first light-receiving portion, to selectively allow an optic element in a first wavelength band to transmit through, and a second filter which is disposed so as to cover the second light-receiving portion, to selectively allow an optic element in a second wavelength band different from the first wavelength band, to transmit through, and the optical filter has a filter laminated structure which is defined such that edge portions of the first filter and the second filter overlap one another on a boundary region between the first light-receiving portion and the second light-receiving portion.
Abstract:
A photodetection device of the present invention includes a semiconductor substrate which is defined such that a first light-receiving portion and a second light-receiving portion are spaced from one another, and an optical filter which is formed on the semiconductor substrate, and includes a first filter which is disposed so as to cover the first light-receiving portion, to selectively allow an optic element in a first wavelength band to transmit through, and a second filter which is disposed so as to cover the second light-receiving portion, to selectively allow an optic element in a second wavelength band different from the first wavelength band, to transmit through, and the optical filter has a filter laminated structure which is defined such that edge portions of the first filter and the second filter overlap one another on a boundary region between the first light-receiving portion and the second light-receiving portion.
Abstract:
A photodetector includes a semiconductor substrate; a light receiving part for signal detection and an infrared light receiving part which are formed in the semiconductor substrate and are covered at least by first color filters having a common color; and second color filters which overlap with the first color filters on the infrared light receiving part and are configured to block light in a wavelength range transmitting through the first color filters.
Abstract:
A photodetector includes a semiconductor substrate; a light receiving part for signal detection and an infrared light receiving part which are formed in the semiconductor substrate and are covered at least by first color filters having a common color; and second color filters which overlap with the first color filters on the infrared light receiving part and are configured to block light in a wavelength range transmitting through the first color filters.
Abstract:
A photodetection device of the present invention includes a semiconductor substrate which is defined such that a first light-receiving portion and a second light-receiving portion are spaced from one another, and an optical filter which is formed on the semiconductor substrate, and includes a first filter which is disposed so as to cover the first light-receiving portion, to selectively allow an optic element in a first wavelength band to transmit through, and a second filter which is disposed so as to cover the second light-receiving portion, to selectively allow an optic element in a second wavelength band different from the first wavelength band, to transmit through, and the optical filter has a filter laminated structure which is defined such that edge portions of the first filter and the second filter overlap one another on a boundary region between the first light-receiving portion and the second light-receiving portion.
Abstract:
The present disclosure provides a semiconductor integrated circuit (IC) capable of suppressing influence of disturbance noise. The semiconductor IC includes an input terminal, an amplifier circuit, a first element and a second element. The input terminal is configured to allow inputting a signal of abrupt voltage change. The amplifier circuit is configured to amplify a difference between two input signals. The first element is connected to a first input end of the amplifier circuit. The second element is connected to a second input end of the amplifier circuit. In a plan view, a distance between a first position included in an arrangement region of the first element and a third position included in the input terminal is equal to a distance between a second position included in an arrangement region of the second element and the third position.
Abstract:
A photodetection device of the present invention includes a semiconductor substrate which is defined such that a first light-receiving portion and a second light-receiving portion are spaced from one another, and an optical filter which is formed on the semiconductor substrate, and includes a first filter which is disposed so as to cover the first light-receiving portion, to selectively allow an optic element in a first wavelength band to transmit through, and a second filter which is disposed so as to cover the second light-receiving portion, to selectively allow an optic element in a second wavelength band different from the first wavelength band, to transmit through, and the optical filter has a filter laminated structure which is defined such that edge portions of the first filter and the second filter overlap one another on a boundary region between the first light-receiving portion and the second light-receiving portion.