Abstract:
A thermal print head includes a heat-generating substrate, a resistor layer, a conductive layer, a first substrate, a second substrate, and a third substrate. The heat-generating substrate includes a heat-generating substrate obverse face and a heat-generating substrate reverse face that are spaced apart from each other in a thickness direction. The resistor layer is supported by the heat-generating substrate. The conductive layer is supported by the heat-generating substrate, and electrically connected to the resistor layer. The first substrate is located upstream of the heat-generating substrate in a sub-scanning direction. The second substrate is located upstream of the first substrate in the sub-scanning direction. The third substrate is bonded to the first substrate and the second substrate and higher in flexibility than the first substrate.
Abstract:
A thermal printhead includes a substrate, a resistor layer with heat generation portions supported by the substrate and aligned in a primary scanning direction, a wiring layer supported by the substrate to form a conductive path to the heat generation portions, an insulating layer interposed between the substrate and the resistor layer, and a reflection layer located opposite to the heat generation portions with respect to the insulating layer. The reflection layer overlaps with the heat generation portions as viewed in a thickness direction of the heat generation portions and has a greater heat reflectivity than the insulating layer.
Abstract:
There is provided a dye-sensitized photovoltaic device, which can achieve low-resistivity of an optical transparent electrode film composing first and second electrodes and can improve photovoltaic power generation characteristics, includes: a first substrate; a first electrode disposed on the first substrate; a catalyst layer formed on the first electrode and having a catalytic activity for a redox electrolyte; an electrolysis solution contacted with the catalyst layer and dissolving a redox electrolyte in a solvent; a porous semiconductor layer contacted with the electrolysis solution and including semiconductor fine particles and dye molecules; a second electrode disposed on the porous semiconductor layer; a second substrate disposed on the second electrode; and a sealant disposed between the first and second substrates, and sealing the electrolysis solution. The first and second electrodes are composed of an annealed layer of an ITO fine particles contained film coated on the first and second substrates.