Abstract:
An apparatus and method is disclosed including first and second housing halves which are welded together to attach the apparatus to a pup joint installed in an oil casing. The housing includes a cylindrical portion and first and second frustoconical portions at opposite axial ends thereof. Axially extending L-shaped spacers are secured to the inside portion and include longitudinal edges which abut with the outer surface of the pipe. Series of axially spaced, first and right parallelepiped shaped magnets are sandwiched between the inside portion of the cylindrical portion and the outer surface of the pipe, with the poles of the first and magnets being reversed relative to the pipe. The housing halves are welded along their longitudinal free edges after being clamped together by a clamping band with sufficient force to secure the apparatus to the pipe generally by frictional forces and being free of the attachment to the pipe.
Abstract:
Apparatus (14, 14a) for treating liquids flowing through a pipe (10, 10a) is formed by clamping magnet units (16) of the desired number to the pipe (10, 10a). The magnet units (16) are formed by permanent magnet structures (20) held in a plastic casing (18) by a potting compound (36). The permanent magnet structure (20) includes two pairs of permanent magnets (24, 26, 28, 30) having first surfaces (24N, 26N, 28S, 30S) projecting beyond the potting compound (36) and the open side (18d) of the casing (18) and second surfaces (24S, 26S, 28N, 30N) directly abutting with the upper surface of a ferromagnetic strip (22) providing a flux path between the second surfaces (24S, 26S, 28N, 30N) of the permanent magnets (24, 26, 28, 30). The magnet units (16) are clamped so that the first surfaces (24N, 26N, 28S, 30S) of the permanent magnets (24, 26, 28, 30) directly bear against the outside of the pipe (10, 10a). The first surfaces (24N, 26N, 28S, 30S) of the permanent magnets (24, 26, 28, 30) are physically configured to have a more intimate contact with the pipe (10, 10a) to overcome the loss of effectiveness experienced when the pipe (10, 10a) is formed of magnetic material.
Abstract:
The apparatus (12, 112) includes a preferred number of permanent magnet units (14, 114) held against the exterior of a pipe (10, 110) through which liquid flows. Each unit (14, 114) includes permanent magnet means (20, 120) and a housing (22, 122) which encloses and tightly holds the permanent magnet means (20, 120) with no loose components and without the use of a potting compound, with the permanent magnet means (20, 120) being accessible through slots (23) provide in the housing (22, 122). The housing (22, 122) is formed from a flat sheet and includes a bottom panel (24, 124), side panels (26, 126), inwardly extending top panels (28, 128), and end panels (32, 132). The bottom panel (24, 124) abuts with the bottom of the permanent magnet means (20, 120), the side panels (26, 126) are bent to abut with the sides of the permanent magnet means (20, 120), the end panels (32, 132) are bent to abut with the ends of the permanent magnet means (20, 120), and the top panels (28, 128) are bent to abut with the top of the permanent magnet means (20, 120). In one of the preferred embodiments, an elongated tie strap (160) is sandwiched between the permanent magnet means (120) and the housing (122) within a depression (164) formed in the bottom panel (124) and the side panels (126).
Abstract:
The apparatus includes a preferred number of permanent magnet units held against the exterior of a pipe through which liquid flows. Each unit includes a permanent magnet pack and pole pieces at the ends of the magnet pack. A housing encloses the permanent magnet pack, the pole pieces projecting through slots provided in the housing. The housing includes a bottom panel, side panels, and inwardly extending top panels, each top panel having an upwardly directed flange thereon. Bolts and nuts pass through these upwardly extending flanges. Additionally, the housing includes end panels having outturned flagnes. Wings composed of reversely folded panels have laterally spaced flanges thereon. Additional bolts and nuts secure the flanges on the end panels to the flanges on the wings so as to maintain the wings in an oppositely issuing relationship. Each wing has a slot formed therein so that any preferred number of units can be held tightly against the pipe through the agency of wires threaded through the various slots. The number of units to be employed depends upon the size of the pipe.
Abstract:
An apparatus (10) for liquefying tires is shown in a first form including a plurality of tire modules (12) holding tires which are immersed in and preheated by a slurry located in a tank (22). After preheating, the tire module (12) and tires held thereon are removed from the preheat tank (22) and are immersed in a slurry located in a high temperature tank (28). The temperature of the slurry in the high temperature tank (28) is sufficient to liquify the tires. As the tires liquify, the slurry produced is retained in the high temperature tank (28) to immerse further tires and also overflows from the high temperature tank (28) to the preheat tank (22) and then to a storage tank (36). The slurry from the storage tank (36) can be pumped to the burner (42) of the heat exchanger (48) for heating the slurry in the high temperature tank (28) or can be used for other purposes. In an alternate form, the apparatus (10) includes a vertical stack of tires held in a basket (64) removably supported in a tank (62), with the height of the stack being greater than the outlet (74) of the tank (62) and the level of the slurry located in the tank (62). Thus, the tires above the slurry are preheated prior to being immersed in the slurry and act as a weight to move the stack of tires downward as the lower tires in the slurry are melted.
Abstract:
An apparatus (10) for liquifying tires is shown including a plurality of tire modules (12) holding tires which are immersed in and preheated by a slurry located in a tank (22). After preheating, the tire module (12) and tires held thereon are removed from the preheat tank (22) and are immersed in a slurry located in a high temperature tank (28). The temperature of the slurry in the high temperature tank (28) is sufficient to liquify the tires. As the tires liquify, the slurry produced is retained in the high temperature tank (28) to immerse further tires and also overflows from the high temperature tank (28) to the preheat tank (22) and then to a storage tank (36). The slurry from the storage tank (36) can be pumped to the burner (42) of the heat exchanger (48) for heating the slurry in the high temperature tank (28) or can be used for other uses.
Abstract:
A casing containing a strip of ferromagnetic material has a pair of ceramic magnets at each end thereof associated with one of each pair of magnetics is a ferromagnetic shoe member that provides an angled pole face that bears against the outside of the pipe. These components are contained within the casing by a means of a potting compound.