Abstract:
A method for mitigating atmospheric errors in code and carrier phase measurements based on signals received from a plurality of satellites in a global navigation satellite system is disclosed. A residual tropospheric delay and a plurality of residual ionospheric delays are modeled as states in a Kalman filter. The state update functions of the Kalman filter include at least one baseline distance dependant factor, wherein the baseline distance is the distance between a reference receiver and a mobile receiver. A plurality of ambiguity values are modeled as states in the Kalman filter. The state update function of the Kalman filter for the ambiguity states includes a dynamic noise factor. An estimated position of mobile receiver is updated in accordance with the residual tropospheric delay, the plurality of residual ionospheric delays and/or the plurality of ambiguity values.
Abstract:
A mobile satellite navigation receiver for calculating an offset between a local positioning system and a wide-area satellite positioning system is presented. The mobile satellite navigation receiver determines a first solution of a position of the mobile satellite navigation receiver relative to a first local positioning system, wherein the first local positioning system includes one or more reference receivers at known locations. The mobile satellite navigation receiver determines a second solution of the position of the satellite navigation receiver relative to a wide-area differential satellite positioning system. The mobile satellite navigation receiver then calculates an offset between the first solution and the second solution.
Abstract:
A method and system are provided to determine a relative position vector between primary receiver associated with a reference station and secondary receiver associated with a user. The method and system determine a position of the reference station at the reference station according to signals received thereat from a plurality of satellites, determine a position of the user receiver at the user based on measurements obtained thereat and on error corrections computed at the reference station, and compute the relative position vector by differencing the position of the reference station and the position of the user.
Abstract:
The present invention includes a method for a combined use of a local RTK system and a regional, wide-area, or global differential carrier-phase positioning system (WADGPS) in which disadvantages associated with the RTK and the WADGPS navigation techniques when used separately are avoided. The method includes using a known position of a user receiver that has been stationary or using an RTK system to initialize the floating ambiguity values in the WADGPS system when the user receiver is moving. Thereafter, the refraction-corrected carrier-phase measurements obtained at the user GPS receiver are adjusted by including the corresponding initial floating ambiguity values and the floating ambiguity values are treated as well known (small variance) in subsequent processes to position the user receiver in the WADGPS system.
Abstract:
A Global Positioning System receiver includes an intermediate frequency (IF) processor configured to downconvert broadcast signal to generate a first channel signal which is further downconverted to recover a PRN signal by an angle rotator. The receiver further includes a signal generator configured to generate N gated PRN signals. The N gated PRN signals are generated based on a local replica PRN signal time-divided by M intervals within a chip period of the local replica PRN signal. N and M are positive integers. A number of correlators is also provided. Each of which the correlators are configured to multiply a respective one of N gated PRN signals with the PRN signal to generate a number of correlation values. The correlation values are utilized to monitor distortions in the broadcast signal and/or to track the carrier frequency signal. Further, a corresponding method is also provided.
Abstract:
A method and apparatus for synthesizing a stable reference signal of a desired frequency within a spread spectrum receiver is disclosed herein. The spread spectrum receiver is designed for use in conjunction with a global positioning system (GPS) receiver, and operates to receive broadcast differential GPS correction information. The present frequency synthesis technique contemplates generating a sequence of timing signals within the GPS receiver on the basis of GPS satellite signals received thereby, and providing the timing signals to the signal receiver. Within the signal receiver, the signal cycles of a local oscillator occurring between ones of the timing signals are counted. The frequency of the local oscillator is then determined by dividing the counted cycles of the local oscillator by one of the known time intervals. The determined frequency of output signals produced by the local oscillator is then scaled so as necessary to produce the reference signal of desired frequency. This allows precisely controlled reference frequencies to be obtained irrespective of the existence of frequency instability within the local oscillator. In a preferred implementation, the stable reference signals are employed during acquisition of differential GPS correction signals received by the spread spectrum receiver. In particular, the desired reference frequency is incrementally adjusted during the process of searching for and acquiring the exact frequency of the incident differential GPS correction signals. The spread spectrum receiver is disposed to provide differential GPS correction information extracted from the acquired differential GPS correction signals to the GPS receiver.
Abstract:
A system and method for providing improved correction information to navigation receivers includes receiving, from a plurality of reference stations at known locations, a plurality of satellite navigation measurements of signals from a plurality of global navigation satellites. A state of the plurality of global navigation satellites is computed based on the received satellite navigation measurements. Baselines, each corresponding to a pair of the reference stations, are identified. For each identified baseline, computing floating and integer values for a double-differenced integer ambiguity. Double-differenced integer ambiguities that satisfy a set of predefined conditions are identified, and the computed state of the plurality of global navigation satellites is adjusted in accordance with an integer value constraint applied to each double-differenced integer ambiguity that satisfies the set of predefined conditions. The correction information is computed from the adjusted computed state of the plurality of global navigation satellites.
Abstract:
A system and method for compensating for faulty satellite navigation measurements. A plurality of measurements in a system is received for a measurement epoch. A Kalman filter is used to calculate a state of the system for the measurement epoch based on the plurality of measurements, wherein the state of the system for the measurement epoch is calculated using a first closed-form update equation. A faulty measurement is detected in the plurality of measurements for the measurement epoch and a revised state of the system for the measurement epoch that compensates for the faulty measurement is calculated, using the calculated state of the system for the measurement epoch as an input to the revised state calculation, and using a revised closed-form update equation comprising the first closed-form update equation modified with respect to the faulty measurement.
Abstract:
A new three-frequency technique for obtaining geometry free, refraction-corrected, ambiguity-resolved, carrier-phase measurements has been described. First, the ambiguities on at least two wide-lane carrier-phase measurement differences are obtained by averaging the corresponding frequency weighted code measurements. These two ambiguity-resolved measurements are then combined into a composite refraction-corrected measurement. The resulting composite measurement is quite noisy due to the amplification of the multipath noise in the original carrier-phase measurements. But this noisy refraction-corrected carrier-phase measurement can be smoothed with another minimum-noise, refraction-corrected carrier-phase composite measurement. The minimum-noise, refraction-corrected composite measurement is constructed from the primary carrier-phase measurements prior to resolving their whole-cycle ambiguities. By smoothing the difference in the two refraction-corrected measurements, the noise can be reduced and the bias in the low-noise measurement (due to incorrect ambiguities) can be estimated and subsequently corrected.
Abstract:
A method for performing integer ambiguity resolution in a global navigation satellite system is disclosed. A set of ambiguities, which are associated with carrier phase measurements of at least some of the signals received from the satellites in an identified set of satellites, are identified. Integer ambiguities are estimated and a best candidate set and a second best candidate set of integer ambiguity values are determined. Upon determining that the best set of integer ambiguity values fail to meet a discrimination test, each ambiguity for which integer ambiguity values in the best candidate set and second best candidate set fail to meet predefined criteria are removed from the set of ambiguities to produce a reduced set of ambiguities. The integer ambiguities in the reduced set of ambiguities are then resolved and an output is generated in accordance with the resolved integer ambiguities.