摘要:
Systems and methods may provide for monitoring a current provided from a voltage regulator to a non-core region of a processor, and asserting a throttle signal to the non-core region of the processor if the current exceeds a supply capability threshold of the voltage regulator. In one example, a specified current supply capability of the non-core region is greater than a current supply capability of the voltage regulator, and the supply capability threshold is less than the specified current supply capability of the non-core region and an over current protection threshold of the non-core region.
摘要:
Systems and methods may provide for monitoring a current provided from a voltage regulator to a non-core region of a processor, and asserting a throttle signal to the non-core region of the processor if the current exceeds a supply capability threshold of the voltage regulator. In one example, a specified current supply capability of the non-core region is greater than a current supply capability of the voltage regulator, and the supply capability threshold is less than the specified current supply capability of the non-core region and an over current protection threshold of the non-core region.
摘要:
Power consumption and dissipation during sleep states of processors is reduced using a novel connected standby sleep state. In the connected standby sleep state a dedicated power plane is used to maintain processor context. To conserve power, unnecessary components on the processor are powered down, including all of the clock components, and wakeup sources previously directed to the processor are directed to a platform control hub. The platform control hub sustains certain architectural functions for the processor during connected standby sleep state, and manages the wakeup logic for returning the processor to the preceding sleep state.
摘要:
Power consumption and dissipation during sleep states of processors is reduced using a novel connected standby sleep state. In the connected standby sleep state a dedicated power plane is used to maintain processor context. To conserve power, unnecessary components on the processor are powered down, including all of the clock components, and wakeup sources previously directed to the processor are directed to a platform control hub. The platform control hub sustains certain architectural functions for the processor during connected standby sleep state, and manages the wakeup logic for returning the processor to the preceding sleep state.
摘要:
Power consumption and dissipation is reduced during active display of content from an internal display buffer using a power supply topology that powers a display subsystem separately from the other components of a CPU. The power supply topology enables a processor to enter a sleep state without disabling the active display of content. The processor enters a processor sleep state when the display buffer is full and the processor components are no longer needed. The processor exits the processor sleep state when the display buffer is empty and operates in conjunction with the display subsystem to fill the buffer with more content. The processor continues to enter and exit the processor sleep states as appropriate until active display ends.
摘要:
Power consumption and dissipation is reduced during active display of content from an internal display buffer using a power supply topology that powers a display subsystem separately from the other components of a CPU. The power supply topology enables a processor to enter a sleep state without disabling the active display of content. The processor enters a processor sleep state when the display buffer is full and the processor components are no longer needed. The processor exits the processor sleep state when the display buffer is empty and operates in conjunction with the display subsystem to fill the buffer with more content. The processor continues to enter and exit the processor sleep states as appropriate until active display ends.
摘要:
Power consumption and dissipation during sleep states of processors is reduced using a novel connected standby sleep state. In the connected standby sleep state a dedicated power plane is used to maintain processor context. To conserve power, unnecessary components on the processor are powered down, including all of the clock components, and wakeup sources previously directed to the processor are directed to a platform control hub. The platform control hub sustains certain architectural functions for the processor during connected standby sleep state, and manages the wakeup logic for returning the processor to the preceding sleep state.
摘要:
Methods and apparatus relating to controlling power consumption by a power management link are described. In one embodiment, the physical interface of a power management (PM) link is shut down when a processor is in a sleep state (e.g., to conserve power), while maintaining the availability of the processor for communication to a (e.g., embedded) controller over the PM link. Other embodiments are also disclosed and claimed.
摘要:
Power consumption and dissipation during sleep states of processors is reduced using a novel connected standby sleep state. In the connected standby sleep state a dedicated power plane is used to maintain processor context. To conserve power, unnecessary components on the processor are powered down, including all of the clock components, and wakeup sources previously directed to the processor are directed to a platform control hub. The platform control hub sustains certain architectural functions for the processor during connected standby sleep state, and manages the wakeup logic for returning the processor to the preceding sleep state.