摘要:
In one embodiment, a method includes sending an adjacency discovery message 1 from a local router over a direct link to a first neighbor router. An adjacency discovery message is not forwarded and includes a repair address. The repair address indicates the local router but is not advertised as reachable over the direct link. An outbound routing update message is sent to a different second neighbor router. The outbound routing update message is forwarded and includes reachability data that indicates the repair address is reachable. A payload of an inbound tunneled packet received at the local router and directed to the repair address is forwarded based on a destination indicated in the payload.
摘要:
In one embodiment, a method includes sending an adjacency discovery message 1 from a local router over a direct link to a first neighbor router. An adjacency discovery message is not forwarded and includes a repair address. The repair address indicates the local router but is not advertised as reachable over the direct link. An outbound routing update message is sent to a different second neighbor router. The outbound routing update message is forwarded and includes reachability data that indicates the repair address is reachable. A payload of an inbound tunneled packet received at the local router and directed to the repair address is forwarded based on a destination indicated in the payload.
摘要:
In one embodiment, each node in a computer network determines a shortest looping ring back to the node through each of its neighbors. Each of these rings may then be marked in a particular direction, ensuring that any ring that shares a link with another ring is marked in such a way that the shared link is in the same direction in each of the rings that share the link. The links that are marked in the particular direction may be stored as part of a first topology. Conversely, the opposite direction on the links (e.g., bidirectional links or parallel unidirectional links) may be stored as a second topology that is link-disjoint from the first topology.
摘要:
In one embodiment, each node in a computer network determines a shortest looping ring back to the node through each of its neighbors. Each of these rings may then be marked in a particular direction, ensuring that any ring that shares a link with another ring is marked in such a way that the shared link is in the same direction in each of the rings that share the link. The links that are marked in the particular direction may be stored as part of a first topology. Conversely, the opposite direction on the links (e.g., bidirectional links or parallel unidirectional links) may be stored as a second topology that is link-disjoint from the first topology.
摘要:
Techniques for recovering lost routes include receiving reported costs for transmitting data to a destination from neighboring nodes; and determining total costs as a sum of costs for transmitting data packets to the neighboring nodes and a corresponding reported cost. A selected neighboring node with a minimum total cost is determined as the next hop for the route to the destination. A feasible successor set of neighboring nodes which have reported costs less than the total cost of the selected neighboring node and excluding the selected neighboring node, and successor data about the feasible successor set, are determined. The successor data is sent to the neighboring nodes. A neighboring node that loses a route to the particular destination node is able to determine whether to query the sending node while recovering a lost route to the destination based on the successor data, thereby reducing network resource consumption.
摘要:
Techniques for sharing routing information over a network include determining whether the scale of a flooding domain exceeds a threshold. If so, then a router announcement message is sent over a particular link. The message indicates the local router is a flooding domain border router (FDBR). Summary routing information is determined with less than a certain level of detail used in the flooding domain for routers connected to the local router through links different from the particular link. The summary routing information is sent over the particular link in a link state message that includes type data that indicates summary routing information that crosses a FDBR. These techniques allow automatic favorable scaling of domains of shared routing information as the size of a mobile ad hoc network grows.
摘要:
Techniques for sharing routing information over a network include determining whether the scale of a flooding domain exceeds a threshold. If so, then a router announcement message is sent over a particular link. The message indicates the local router is a flooding domain border router (FDBR). Summary routing information is determined with less than a certain level of detail used in the flooding domain for routers connected to the local router through links different from the particular link. The summary routing information is sent over the particular link in a link state message that includes type data that indicates summary routing information that crosses a FDBR. These techniques allow automatic favorable scaling of domains of shared routing information as the size of a mobile ad hoc network grows.
摘要:
A router identifies transit links and non-transit links. Only the non-transit links are advertised as routes to adjacent routers, thereby protecting the transit links from edge traffic which terminates on a network on one of the transit links. In another aspect of the invention, an administrative whitelist supplements the routes which identify the transit link network routes. In another aspect of the invention, a method for advertising routes identifies entries in a router table as broadcast or point-to-point. Only the router table entries for point-to-point links which are not transit or broadcast links that are not for a neighboring router are advertised, whereas the point-to-point transit links or broadcast transit links are advertised as transit links if an administrative whitelist is enabled.
摘要:
An athletic performance monitoring system and method are disclosed that assist a user in monitoring an athletic endeavor. A system that incorporates teachings of the present disclosure may include, for example, a local area wireless transceiver capable of receiving a signal from a motion sensor. A performance engine may be communicatively coupled to the local area wireless transceiver. In operation, the performance engine may utilize the signal from the motion sensor to generate a performance metric like average speed or distance traveled. The system may also include an output mechanism such as an audio device capable of presenting the performance metric to a user in an audible message while also being capable of playing an audio representation of music to the user.
摘要:
A method and apparatus are presented for determining network nodes for aggregating addresses in routing information used for routing data packets over a network. Link data and reachability data are received. Link data indicates direct links between each of multiple candidate routers of a network and a different router or a network segment. Reachability data indicates a set of one or more contiguous network addresses that can be reached on each link described in the link data. A measure of possible aggregation of contiguous network addresses is determined at the candidate routers based on the link data and the reachability data. A preferred router to aggregate addresses in routing information sent between routers in the network is determined among the candidate routers based on the measure of possible aggregation at each candidate router.